LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Baldwin, Alexander
Languages: English
Types: Doctoral thesis
Subjects:
The processing conducted by the visual system requires the combination of signals that are detected at different locations in the visual field. The processes by which these signals are combined are explored here using psychophysical experiments and computer modelling. Most of the work presented in this thesis is concerned with the summation of contrast over space at detection threshold. Previous investigations of this sort have been confounded by the inhomogeneity in contrast sensitivity across the visual field. Experiments performed in this thesis find that the decline in log contrast sensitivity with eccentricity is bilinear, with an initial steep fall-off followed by a shallower decline. This decline is scale-invariant for spatial frequencies of 0.7 to 4 c/deg. A detailed map of the inhomogeneity is developed, and applied to area summation experiments both by incorporating it into models of the visual system and by using it to compensate stimuli in order to factor out the effects of the inhomogeneity. The results of these area summation experiments show that the summation of contrast over area is spatially extensive (occurring over 33 stimulus carrier cycles), and that summation behaviour is the same in the fovea, parafovea, and periphery. Summation occurs according to a fourth-root summation rule, consistent with a “noisy energy” model. This work is extended to investigate the visual deficit in amblyopia, finding that area summation is normal in amblyopic observers. Finally, the methods used to study the summation of threshold contrast over area are adapted to investigate the integration of coherent orientation signals in a texture. The results of this study are described by a two-stage model, with a mandatory local combination stage followed by flexible global pooling of these local outputs. In each study, the results suggest a more extensive combination of signals in vision than has been previously understood.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 10 Discussion 190 10.1 Conclusions from the work presented here . . . . . . . . . . . . . . . . . . . . . . 190 10.1.1 The visual field inhomogeneity in log contrast sensitivity is bilinear . . . 190 10.1.2 Area summation is spatially extensive and occurs according to a single rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 10.1.3 Summation of threshold contrast over area is normal in amblyopia . . . . 192 10.1.4 The summation of orientation signals is a noisy two-stage process . . . . 193 10.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 10.2.1 Summation of contrast over space . . . . . . . . . . . . . . . . . . . . . . . 194 10.2.2 Integration of orientation signals . . . . . . . . . . . . . . . . . . . . . . . . 194 10.2.3 Extending the orientation Battenberg work to the motion domain . . . . 195 10.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
    • A Birdsall's theorem 210 A.1 Early noise and nonlinear transduction . . . . . . . . . . . . . . . . . . . . . . . . . 210 A.1.1 Single-channel systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 A.1.2 Multi-channel systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 A.1.3 Area summation with early noise . . . . . . . . . . . . . . . . . . . . . . . . 212
    • B MATLAB code 214 B.1 Log-Gabors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 B.1.1 MATLAB code to produce log-Gabor patches . . . . . . . . . . . . . . . . . 214 B.1.2 loggabor.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 B.2 The witch's hat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 B.2.1 MATLAB code to produce a witch's hat attenuation surface . . . . . . . . 216 B.2.2 witchhat.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
    • C Amblyope subjects 218 C.1 Table of amblyope subject information . . . . . . . . . . . . . . . . . . . . . . . . . 218 Abrams, J., Nizam, A., Carrasco, M., 2012. Isoeccentric locations are not equivalent: The extent of the vertical meridian asymmetry. Vision Research 52 (1), 70-78.
    • Ahumada, A. J., Watson, A. B., 2011. Updating the Standard Spatial Observer for contrast detection. Investigative Opthalmology & Visual Science 52 (E-Abstract 1879).
    • Akaike, H., 1974. A New Look at the Statistical Model Identification. IEEE Transactions On Automatic Control 19 (6), 716-723.
    • Amano, K., Edwards, M., Badcock, D. R., Nishida, S., 2009. Adaptive pooling of visual motion signals by the human visual system revealed with a novel multi-element stimulus. Journal of Vision 9(3) (4), 1-25.
    • Anderson, S. J., Holliday, I. E., Harding, G. F. A., 1999. Assessment of cortical dysfunction in human strabismic amblyopia using magnetoencephalography (MEG). Vision Research 39, 1723-1738.
    • Anderson, S. J., Mullen, K. T., Hess, R. F., 1991. Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors. Journal of Physiology 442, 47-64.
    • Baker, D. H., Meese, T. S., 2011. Contrast integration over area is extensive: A three-stage model of spatial summation. Journal of Vision 11:14 (14), 1-16.
    • Baker, D. H., Meese, T. S., 2012. Using psychophysical reverse correlation to measure the extent of spatial pooling of luminance contrast. Perception 41 (1512).
    • Baldwin, A. S., Meese, T. S., Baker, D. H., 2012. The attenuation surface for contrast sensitivity has the form of a witch's hat within the central visual field. Journal of Vision 12:11 (23), 1- 17.
    • Barlow, H. B., 1958. Temporal and spatial summation in human vision at different background intensities. Journal of Physiology 141, 337-350.
    • Barnes, G. R., Hess, R. F., Dumoulin, S. O., Achtman, R. L., Pike, G. B., 2001. The cortical deficit in humans with strabismic amblyopia. Journal of Physiology 533 (1), 281-297.
    • Berkley, M. A., Kitterle, F., Watkins, D. W., 1975. Grating visibility as a function of orientation and retinal eccentricity. Vision Research 15 (2), 239-244.
    • Bijl, P., Koenderink, J. J., Koenderink, P. B. J. J., 1993. Visibility of Elliptical Gaussian Blobs. Vision Research 33 (2), 243-255.
    • Blakemore, C., Campbell, F. W., 1969. On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. Journal of Physiology 203, 237-260.
    • Blakemore, C., van Sluyters, R. C., 1974. Reversal of the physiological effects of monocular deprivation in kittens: further evidence for a sensitive period. Journal of Physiology 237, 195-216.
    • Blakemore, C., Vital-Durand, F., 1986. Effects of visual deprivation on the development of the monkey's lateral geniculate nucleus. Journal of Physiology 380, 493-511.
    • Bonneh, Y., Sagi, D., 1999. Contrast integration across space. Vision Research 39 (16), 2597- 2602.
    • Braddick, O. J., O'Brien, J. M. D., Wattam-Bell, J., Atkinson, J., Turner, R., 2000. Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain. Current Biology 10 (12), 731-734.
    • Bradley, C., Geisler, W. S., 2012. A model of target detectability across the visual field in naturalistic backgrounds. Journal of Vision 12 (9), 318-318.
    • Brainard, D. H., 1997. The Psychophysics Toolbox. Spatial Vision 10 (4), 433-436.
    • Bullier, J., Norton, T. T., 1979. Comparison of Receptive-Field Properties of X and Y Ganglion Cells With X and Y Lateral Geniculate Cells in the Cat. Journal of Neurophysiology 42 (1), 274-291.
    • Campbell, F. W., Kulikowski, J. J., 1966. Orientational selectivity of the human visual system. Journal of Physiology 187, 437-445.
    • Campbell, F. W., Kulikowski, J. J., Levinson, J., 1966. The effect of orientation on the visual resolution of gratings. Journal of Physiology 187, 427-436.
    • Campbell, F. W., Robson, J. G., 1968. Application of Fourier analysis to the visibility of gratings. Journal of Physiology 197, 551-566.
    • Carandini, M., Heeger, D. J., Movshon, J. A., 1999. Linearity and gain control in V1 simple cells. In: Ulinski, P. S., Jones, E. G., Peters, A. (Eds.), Cerebral cortex, Vol 13, Models of cortical circuits. Kluwer Academic/Plenum, New York, pp. 401-443.
    • Corso, J. F., 1963. A theoretico-historical review of the threshold concept. Psychological Bulletin 60 (4), 356-370.
    • Curcio, C. A., Allen, K. a., 1990. Topography of ganglion cells in human retina. The Journal of Comparative Neurology 300 (1), 5-25.
    • Curcio, C. A., Sloan, K. R., Kalina, R. E., Hendrickson, A. E., 1990. Human photoreceptor topography. The Journal of Comparative Neurology 292, 497-523.
    • Dakin, S. C., 2001. Information limit on the spatial integration of local orientation signals. Journal of the Optical Society of America A 18 (5), 1016-1026.
    • Dakin, S. C., Watt, R. J., 1997. The Computation of Orientation Statistics from Visual Texture. Vision Research 37 (22), 3181-3192.
    • Daniel, P. M., Whitteridge, D., 1961. The representation of the visual field on the cerebral cortex in monkeys. Journal of Physiology 159, 203-221.
    • Davis, E. T., Graham, N., 1981. Spatial frequency uncertainty effects in the detection of sinusoidal gratings. Vision Research 21, 705-712.
    • Davis, E. T., Kramer, P., Graham, N., 1983. Uncertainty about spatial frequency, spatial position, or contrast of visual patterns. Perception & Psychophysics 33 (1), 20-28.
    • De Valois, K. K., De Valois, R. L., Yund, E. W., 1979. Response of striate cortex cells to grating and checkerboard patterns. Journal of Physiology 291, 483-505.
    • De Valois, R. L., Albrecht, D. G., Thorell, L. G., 1982. Spatial frequency selectivity of cells in macaque visual cortex. Vision Research 22, 545-559.
    • De Valois, R. L., De Valois, K. K., 1990a. Retinogeniculate Anatomy and Physiology. In: Spatial Vision. Oxford University Press, Oxford, Ch. 3, pp. 55-93.
    • De Valois, R. L., De Valois, K. K., 1990b. Spatial Vision. Oxford University Press, Oxford.
    • De Valois, R. L., De Valois, K. K., 1990c. Striate Cortex. In: Spatial Vision. Oxford University Press, Oxford, Ch. 4, pp. 94-146.
    • Dixon, W. J., Mood, A. M., 1948. A Method for Obtaining and Analyzing Sensitivity Data. Journal of the American Statistical Association 43 (241), 109-126.
    • Downing, C. J., Movshon, J. A., 1989. Spatial and temporal summation in the detection of motion in stochastic random dot displays. Supplement to Investigative Opthalmology and Visual Science 30, 72-87.
    • Finney, D. J., 1971. Probit analysis. Cambridge University Press, Cambridge, UK.
    • Flynn, J. T., 1967. Spatial Summation in Amblyopia. Archives of Ophthalmology 78 (4), 470- 474.
    • Foley, J. M., 1994. Human luminance pattern-vision mechanisms: masking experiments require a new model. Journal of the Optical Society of America A 11 (6), 1710-1719.
    • Foley, J. M., Legge, G. E., 1981. Contrast detection and near-threshold discrimination in human vision. Vision Research 21, 1041-1053.
    • Foley, J. M., Varadharajan, S., Koh, C. C., Farias, M. C. Q., 2007. Detection of Gabor patterns of different sizes, shapes, phases and eccentricities. Vision Research 47 (1), 85-107.
    • Gabor, D., 1946. Theory of communication. Journal of the Institution of Electrical Engineers - Part III: Radio and Communication Engineering 93 (26), 429-441.
    • García-Pérez, M. A., 1998. Forced-choice staircases with fixed step sizes: asymptotic and small-sample properties. Vision Research 38, 1861-1881.
    • García-Pérez, M. a., Peli, E., 2001. Luminance artifacts of cathode-ray tube displays for vision research. Spatial Vision 14 (2), 201-215.
    • García-Pérez, M. A., Sierra-Vázquez, V., 1996. Do channels shift their tuning towards lower spatial frequencies in the periphery? Vision Research 36 (20), 3339-3372.
    • Goodale, M. A., Milner, A. D., 1992. Separate visual pathways for perception and action. Trends in Neurosciences 15 (1), 20-25.
    • Graham, C. H., Brown, R. H., Mote, F. A., 1939. The relation of size of stimulus and intensity in the human eye: I. Intensity thresholds for white light. Journal of Experimental Psychology 24 (6), 555-573.
    • Graham, N., 1981. The visual system does a crude fourier-analysis of patterns. SIAM-AMS Proceedings 13, 1-16.
    • Graham, N., Robson, J. G., Nachmias, J., 1978. Grating summation in the fovea and periphery. Vision Research 18, 815-825.
    • Graham, N. V. S., 1989a. Extrinsic Uncertainty and Summation Revisited. In: Visual Pattern Analyzers. Oxford University Press, Oxford, Ch. 7, pp. 249-285.
    • Graham, N. V. S., 1989b. Intrinsic Uncertainty and Transducer Functions. In: Visual Pattern Analyzers. Oxford University Press, Oxford, Ch. 8, pp. 286-312.
    • Graham, N. V. S., 1989c. Neurophysiology and Psychophysics. In: Visual Pattern Analyzers. Oxford University Press, Oxford, Ch. 1, pp. 3-34.
    • Graham, N. V. S., 1989d. Some Mathematics. In: Visual Pattern Analyzers. Oxford University Press, Oxford, Ch. 2, pp. 35-86.
    • Green, D. M., 1961. Detection of Auditory Sinusoids of Uncertain Frequency. The Journal of the Acoustical Society of America 33 (7), 897-903.
    • Green, D. M., Swets, J. A., 1966a. Assumed Distribution of Signal and Noise. In: Signal Detection Theory and Psychophysics. John Wiley & Sons, New York, Ch. 3, pp. 53-85.
    • Green, D. M., Swets, J. A., 1966b. Elements of Statistical Decision Theory. In: Signal Detection Theory and Psychophysics. John Wiley & Sons, New York, Ch. 1, pp. 7-29.
    • Green, D. M., Swets, J. A., 1966c. Signal Detection Theory and Psychophysics. John Wiley & Sons, New York.
    • Green, D. M., Swets, J. A., 1966d. Statistical Decision Theory and Psychophysical Procedures. In: Signal Detection Theory and Psychophysics. John Wiley & Sons, New York, Ch. 2, pp. 30-52.
    • Green, D. M., Swets, J. A., 1966e. The Sensory Threshold and Psychophysical Method. In: Signal Detection Theory and Psychophysics. John Wiley & Sons, New York, Ch. 5, pp. 117-148.
    • Gregory, R., 1966. Eye and Brain: The Psychology of Seeing. Weidenfeld and Nicolson, London.
    • Heeger, D. J., 1991. Nonlinear Model of Neural Responses in Cat Visual Cortex. In: Landy, M., Movshon, J. A. (Eds.), Computational Models of Visual Processing. MIT Press, Cambridge, MA, pp. 119-133.
    • Heeger, D. J., 1992. Normalization of cell responses in cat striate cortex. Visual Neuroscience 9, 181-197.
    • Heeley, D., Timney, B., 1988. Meridional anisotropies of orientation discrimination for sine wave gratings. Vision Research 28 (2), 337-344.
    • Hess, R. F., 1980. A preliminary investigation of neural function and dysfunction in amblyopiaI. Vision Research 20 (9), 749-754.
    • Hess, R. F., Baker, D. H., May, K. A., Wang, J., 2008. On the decline of 1st and 2nd order sensitivity with eccentricity. Journal of Vision 8(1) (19), 1-12.
    • Hess, R. F., Campbell, F., 1980. A preliminary investigation of neural function and dysfunction in amblyopia-II. Vision Research 20 (9), 755-756.
    • Hess, R. F., Campbell, F. W., Greenhalgh, T., 1978. On the Nature of the Neural Abnormality in Human Amblyopia: Neural Aberrations and Neural Sensitivity Loss. European Journal of Physiology 377, 201-207.
    • Hess, R. F., Howell, E. R., 1977. The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification. Vision Research 17 (9), 1049-1055.
    • Hess, R. F., Howell, E. R., 1978. The influence of field size for a periodic stimulus in strabismic amblyopia. Vision Research 18, 501-503.
    • Hess, R. F., Mansouri, B., Dakin, S. C., Allen, H. A., 2006. Integration of local motion is normal in amblyopia. Journal of the Optical Society of America A 23 (5), 986-992.
    • Hilz, R., Cavonius, C., 1974. Functional organization of the peripheral retina: Sensitivity to periodic stimuli. Vision Research 14 (12), 1333-1337.
    • Hoekstra, J., van der Groot, D. P. J., van den Brink, G., Bilsen, F. A., 1974. The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns. Vision Research 14, 365-368.
    • Howell, E. R., Hess, R. F., 1978. The functional area for summation to threshold for sinusoidal gratings. Vision Research 18, 369-374.
    • Hubel, D. H., Wiesel, T. N., 1959. Receptive fields of single neurones in the cat's striate cortex. Journal of Physiology 148, 574-591.
    • Hubel, D. H., Wiesel, T. N., 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology 160, 106-154.
    • Hubel, D. H., Wiesel, T. N., 1970. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. Journal of Physiology 206, 419-436.
    • Husk, J. S., Huang, P.-C., Hess, R. F., 2012. Orientation coherence sensitivity. Journal of Vision 12:6 (18), 1-15.
    • Johnston, A., 1987. Spatial scaling of central and peripheral contrast-sensitivity functions. Journal of the Optical Society of America A 4 (8), 1583 - 1593.
    • Jones, D. G., Anderson, N. D., Murphy, K. M., 2003. Orientation discrimination in visual noise using global and local stimuli. Vision Research 43, 1223-1233.
    • Jones, J. P., Palmer, L. A., 1987. An Evaluation of the Two-Dimensional Gabor Filter Model of Simple Receptive Fields in Cat Striate Cortex. Journal of Neurophysiology 58 (6), 1233- 1258.
    • Kaernbach, C., 2001. Slope bias of psychometric functions derived from adaptive data. Perception & Psychophysics 63 (8), 1389-1398.
    • Kelly, D. H., 1984. Retinal inhomogeneity. I. Spatiotemporal contrast sensitivity. Journal of the Optical Society of America A 1 (1), 107-113.
    • Kersten, D., 1984. Spatial summation in visual noise. Vision Research 24 (12), 1977-1990.
    • Kingdom, F. A. A., Prins, N., 2010. Psychophysics: A Practical Introduction. Academic Press, London.
    • Kleiner, M., Brainard, D. H., Pelli, D. G., 2007. What's new in Psychtoolbox-3? Perception 36 (ECVP Abstract Supplement).
    • Koenderink, J. J., Bouman, M. A., Bueno de Mesquita, A. E., Slappendel, S., 1978a. Perimetry of contrast detection thresholds of moving spatial sine wave patterns. I. The near peripheral visual field (eccentricity 0 -8 ). Journal of the Optical Society of America 68 (6), 845-849.
    • Koenderink, J. J., Bouman, M. A., Bueno de Mesquita, A. E., Slappendel, S., 1978b. Perimetry of contrast detection thresholds of moving spatial sine wave patterns. II. The far peripheral visual field (eccentricity 0 - 50 ). Journal of the Optical Society of America 68 (6), 850- 854.
    • Koenderink, J. J., Bouman, M. A., Bueno de Mesquita, A. E., Slappendel, S., 1978c. Perimetry of contrast detection thresholds of moving spatial sine wave patterns. III. The target as a sensitivity controlling parameter. Journal of the Optical Society of America 68 (6), 854-60.
    • Koenderink, J. J., Bouman, M. A., Bueno de Mesquita, A. E., Slappendel, S., 1978d. Perimetry of contrast detection thresholds of moving spatial sine wave patterns. IV. The influence of mean retinal illuminance. Journal of the Optical Society of America 68 (6), 860-865.
    • Kontsevich, L. L., Tyler, C. W., 1999. Nonlinearities of near-threshold contrast transduction. Vision Research 39 (10), 1869-80.
    • Krantz, D. H., 1969. Threshold theories of signal detection. Psychological Review 76 (3), 308- 324.
    • Kuffler, S. W., 1953. Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology 16, 37-68.
    • Kulikowski, J. J., Abadi, R., King-Smith, P. E., 1973. Orientational selectivity of grating and line detectors in human vision. Vision Research 13, 1479-1486.
    • Laming, D., 2013. Probability summation - a critique. Journal of the Optical Society of America A (in press).
    • Landy, M. S., Graham, N., 2004. Visual Perception of Texture. In: Chalupa, L. M., Werner, J. S. (Eds.), The Visual Neurosciences. MIT Press, Cambridge, MA, Ch. 9, pp. 1106-1118.
    • Lasley, D. J., Cohn, T. E., 1981. Why discrimination may be better than detection. Vision Research 21, 273-278.
    • Ledgeway, T., McGraw, P., Simmers, A., 2011. What is the spatial integration area for global motion perception in human central vision? Journal of Vision 11 (11), 704-704.
    • Legge, G. E., 1978. Space domain properties of a spatial frequency channel in human vision. Vision Research 18, 959-969.
    • Legge, G. E., Foley, J. M., 1980. Contrast masking in human vision. Journal of the Optical Society of America 70 (12), 1458-1471.
    • Levi, D. M., Harwerth, R. S., 1977. Spatio-temporal interactions in anisometropic and strabismic amblyopia. Investigative Opthalmology & Visual Science 16 (1), 90-95.
    • Levi, D. M., Harwerth, R. S., Manny, R. E., 1979. Suprathreshold spatial frequency detection and binocular interaction in strabismic and anisometropic amblyopia. Investigative Opthalmology & Visual Science 18 (7), 714-725.
    • Levi, D. M., Klein, S. A., 2008. What limits performance in the amblyopic visual system : Seeing signals in noise with an amblyopic brain. Journal of Vision 8:4 (1), 1-23.
    • Long, G. M., Tuck, J. P., 1991. Comparison of contrast sensitivity functions across three orientations: implications for theory and testing. Perception 20 (3), 373-380.
    • Lu, Z.-L., Dosher, B. A., 2008. Characterizing observers using external noise and observer models: assessing internal representations with external noise. Psychological Review 115 (1), 44-82.
    • Majaj, N. J., Carandini, M., Movshon, J. A., 2007. Motion integration by neurons in macaque MT is local, not global. The Journal of Neuroscience 27 (2), 366-370.
    • Mäkelä, P., Näsänen, R., Rovamo, J., Melmoth, D., 2001. Identification of facial images in peripheral vision. Vision Research 41, 599-610.
    • Manahilov, V., Simpson, W. A., 2001. Energy model for contrast detection: spatial-frequency and orientation selectivity in grating summation. Vision Research 41, 1547-60.
    • Manahilov, V., Simpson, W. A., McCulloch, D. L., 2001. Spatial summation of peripheral Gabor patches. Journal of the Optical Society of America A 18 (2), 273-282.
    • Marcum, J. I., 1947. A statistical theory of target detection by pulsed radar. Tech. rep., Rand Corporation, Santa Monica.
    • Marr, D., 1982. Vision. W. H. Freeman and Company, San Francisco.
    • Marr, D., Hildreth, E., 1980. Theory of Edge Detection. Proceedings of the Royal Society B 207 (1167), 187-217.
    • Marcˇelja, S., 1980. Mathematical description of the responses of simple cortical cells. Journal of the Optical Society of America 70 (11), 1297-1300.
    • Mayer, M., Tyler, C., 1986. Invariance of the slope of the psychometric function with spatial summation. Journal of the Optical Society of America A 3 (8), 1166-1172.
    • McKee, S. P., Levi, D. M., Movshon, J. A., 2003. The pattern of visual deficits in amblyopia. Journal of Vision 3, 380-405.
    • Meese, T. S., 2010. Spatially extensive summation of contrast energy is revealed by contrast detection of micro-pattern textures. Journal of Vision 10:8 (14), 1-21.
    • Meese, T. S., Baker, D. H., 2011. Contrast summation across eyes and space is revealed along the entire dipper function by a “ Swiss cheese ” stimulus. Journal of Vision 11:1 (23), 1-23.
    • Meese, T. S., Hess, R. F., 2007. Anisotropy for spatial summation of elongated patches of grating: a tale of two tails. Vision Research 47, 1880-1892.
    • Meese, T. S., Hess, R. F., Williams, C. B., 2005. Size matters, but not for everyone: Individual differences for contrast discrimination. Journal of Vision 5, 928-947.
    • Meese, T. S., Summers, R. J., 2007. Area summation in human vision at and above detection threshold. Proceedings of the Royal Society B 274 (1627), 2891-2900.
    • Meese, T. S., Summers, R. J., 2009. Neuronal convergence in early contrast vision: binocular summation is followed by response nonlinearity and area summation. Journal of Vision 9:4 (7), 1-16.
    • Meese, T. S., Summers, R. J., 2012. Theory and data for area summation of contrast with and without uncertainty: Evidence for a noisy energy model. Journal of Vision 12:11 (9), 1-28.
    • Melmoth, D. R., Rovamo, J. M., 2003. Scaling of letter size and contrast equalises perception across eccentricities and set sizes. Vision Research 43, 769-777.
    • Mishkin, M., Ungerleider, L. G., 1982. Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behavioural Brain Research 6, 57-77.
    • Mullen, K. T., Beaudot, W. H. A., Ivanov, I. V., 2011. Evidence that global processing does not limit thresholds for RF shape discrimination. Journal of Vision 11:3 (6), 1-21.
    • Nachmias, J., 1981. On the psychometric function for contrast detection. Vision Research 21, 215-223.
    • Nachmias, J., Steinman, R. M., 1963. Study of Absolute Visual Detection by the Rating-Scale Method. Journal of the Optical Society of America 53 (10), 1206-1213.
    • Nelder, J. A., Mead, R., 1965. A simplex method for function minimization. The Computer Journal 7, 308-313.
    • Neri, P., 2002. Psychophysical reverse correlation as a potential bridge between perception and physiology. Perception 31 (ECVP Abstract Supplement).
    • Nichols, M. J., Newsome, W. T., 2002. Middle Temporal Visual Area Microstimulation Influences Veridical Judgements of Motion Direction. The Journal of Neuroscience 22 (21), 9530-9540.
    • Parkes, L., Lund, J., Angelucci, A., Solomon, J. a., Morgan, M., 2001. Compulsory averaging of crowded orientation signals in human vision. Nature Neuroscience 4 (7), 739-744.
    • Peirce, J. W., 2007. The potential importance of saturating and supersaturating contrast response functions in visual cortex. Journal of Vision 7:6 (13), 1-10.
    • Pelli, D. G., 1985. Uncertainty explains many aspects of visual contrast detection and discrimination. Journal of the Optical Society of America A 2 (9), 1508-1532.
    • Pelli, D. G., 1990. The quantum efficiency of vision. In: Vision: Coding and Efficiency. Cambridge University Press, Cambridge, pp. 3-24.
    • Pelli, D. G., 1991. Noise in the Visual System May Be Early. In: Landy, M., Movshon, J. A. (Eds.), Computational Models of Visual Processing. MIT Press, Cambridge, Ch. 11, pp. 147-152.
    • Perry, V. H., Cowey, A., 1985. The ganglion cell and cone distributions in the monkey's retina: Implications for central magnification factors. Vision Research 25 (12), 1795-1810.
    • Peterson, W. W., Birdsall, T. G., Fox, W. C., 1954. The theory of signal detectability. Information Theory, IRE Professional Group on 4 (4), 171-212.
    • Phillips, G. C., Wilson, H. R., 1984. Orientation bandwidths of spatial mechanisms measured by masking. Journal of the Optical Society of America A 1 (2), 226-232.
    • Pointer, J. S., Hess, R. F., 1989. The contrast sensitivity gradient across the human visual field: with emphasis on the low spatial frequency range. Vision Research 29 (9), 1133-1151.
    • Polat, U., Norcia, a. M., 1998. Elongated physiological summation pools in the human visual cortex. Vision Research 38, 3735-3741.
    • Polat, U., Tyler, C. W. C. W., Mar. 1999. What pattern the eye sees best. Vision research 39 (5), 887-95.
    • Pöppel, E., Harvey, L. O., 1973. Light-Difference Threshold and Subjective Brightness in the Periphery of the Visual Field. Psychologische Forschung 36, 145-161.
    • Poynton, C., 1998. The rehabilitation of gamma. In: Rogowitz, B. E., Pappas, T. N. (Eds.), Human Vision and Electronic Imaging III, Proceedings of the SPIE/IS&T Conference 3299. Vol. 1998. SPIE, Bellingham, Washington, pp. 1-18.
    • Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., 1989. Downhill Simplex Method in Multidimensions. In: Numerical Recipes in Pascal. Cambridge University Press, Cambridge, UK, Ch. 10.4, pp. 326-330.
    • Prins, N., 2012. The psychometric function: the lapse rate revisited. Journal of Vision 12:6 (25), 1-16.
    • Prins, N., Kingdom, F. A. A., 2009. Palamedes: Matlab routines for analyzing psychophysical data. www.palamedestoolbox.org (accessed 07/01/13).
    • Quick, R. F., 1974. A vector-magnitude model of contrast detection. Kybernetik 16, 65-67.
    • Rijsdijk, J. P., Kroon, J. N., van der Wildt, G. J., 1980. Contrast sensitivity as a function of position on the retina. Vision Research 20 (3), 235-41.
    • Robson, J. G., Graham, N., 1981. Probability Summation and Regional Variation in Contrast Sensitivity Across the Visual Field. Vision Research 21, 409-18.
    • Rovamo, J., Franssila, R., Näsänen, R., 1992. Contrast sensitivity as a function of spatial frequency, viewing distance and eccentricity with and without spatial noise. Vision Research 32 (4), 631-637.
    • Rovamo, J., Luntinen, O., Näsänen, R., 1993. Modelling the Dependence of Contrast Sensitivity on Grating Area and Spatial Frequency. Vision Research 33 (18), 2773-2788.
    • Rovamo, J., Virsu, V., 1979. An estimation and application of the human corticial magnification factor. Experimental Brain Research 37, 495-510.
    • Rovamo, J., Virsu, V., Laurinen, P., Hyvärinen, L., 1982. Resolution of gratings oriented along and across meridians in peripheral vision. Investigative Opthalmology & Visual Science 23 (5), 666-670.
    • Rovamo, J., Virsu, V., Näsänen, R., 1978. Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision. Nature 271, 54-56.
    • Rovamo, J. M., Melmoth, D. R., 2002. Scaling of both grating size and contrast is necessary for equalising detection across eccentricities. Journal of Vision 2 (7), 200-200.
    • Sagi, D., 1990. Detection of an orientation singularity in Gabor textures: effect of signal density and spatial frequency. Vision Research 30 (9), 1377-1388.
    • Salzman, C. D., Newsome, W. T., 1994. Neural Mechanisms for Forming a Perceptual Decision. Science 264, 231-237.
    • Sasaki, Y., Rajimehr, R., Kim, B. W., Ekstrom, L. B., Vanduffel, W., Tootell, R. B. H., 2006. The radial bias: a different slant on visual orientation sensitivity in human and nonhuman primates. Neuron 51 (5), 661-670.
    • Shapley, R. M., Tolhurst, D. J., 1973. Edge detectors in human vision. Journal of Physiology 229, 165-183.
    • Simmers, A. J., Ledgeway, T., Hess, R. F., 2005. The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia. Vision Research 45, 449-460.
    • Simmers, A. J., Ledgeway, T., Hess, R. F., McGraw, P. V., 2003. Deficits to global motion processing in human amblyopia. Vision Research 43, 729-738.
    • Skottun, B. C., Bradley, A., Freeman, R. D., 1986. Orientation Discrimination in Amblyopia. Investigative Opthalmology & Visual Science 27 (4), 532-537.
    • Smith, E. L., Hung, L.-F., Harwerth, R. S., 2000. The Degree of Image Degradation and the Depth of Amblyopia. Investigative Opthalmology & Visual Science 41 (12), 3775-3781.
    • Snowden, R., Thompson, P., Troscianko, T., 2006. To the cortex. In: Basic Vision. Oxford University Press, Oxford, Ch. 3, pp. 67-95.
    • Strasburger, H., Rentschler, I., Jüttner, M., 2011. Peripheral vision and pattern recognition: a review. Journal of Vision 11:5 (13), 1-82.
    • Stromeyer, C. F., Klein, S., 1974. Spatial frequency channels in human vision as asymmetric (edge) mechanisms. Vision Research 14, 1409-1420.
    • Swets, J. A., 1961. Is there a sensory threshold? Science 134 (3473), 168-177.
    • Swets, J. A., Tanner, W. P., Birdsall, T. G., 1961. Decision processes in perception. Psychological Review 68 (5), 301-340.
    • Tanner, W. P., 1961. Physiological implications of psychophysical data. Annals of the New York Academy of Sciences 89, 752-765.
    • Tanner, W. P., Swets, J. A., 1954. A decision-making theory of visual detection. Psychological Review 61 (6), 401-409.
    • Thomas, J., 1978. Normal and amblyopic contrast sensitivity functions in central and peripheral retinas. Investigative Opthalmology & Visual Science 17 (8), 746-753.
    • To, M., Lovell, P. G., Troscianko, T., Tolhurst, D. J., 2008. Summation of perceptual cues in natural visual scenes. Proceedings of the Royal Society B 275, 2299-2308.
    • To, M. P. S., Baddeley, R. J., Troscianko, T., Tolhurst, D. J., 2011. A general rule for sensory cue summation: evidence from photographic, musical, phonetic and cross-modal stimuli. Proceedings of the Royal Society B 278, 1365-1372.
    • Tolhurst, D. J., 1972. On the possible existence of edge detector neurones in the human visual system. Vision Research 12, 797-804.
    • Tolhurst, D. J., Heeger, D. J., 1997. Comparison of contrast-normalization and threshold models of the responses of simple cells in cat striate cortex. Visual Neuroscience 14, 293-309.
    • Tyler, C. W., Chen, C.-C., 2000. Signal detection theory in the 2AFC paradigm: attention, channel uncertainty and probability summation. Vision Research 40, 3121-3144.
    • Virsu, V., Rovamo, J., 1979. Visual resolution, contrast sensitivity, and the cortical magnification factor. Experimental Brain Research 37, 475-494.
    • Vorhees, H., Poggio, T., 1988. Computing texture boundaries from images. Nature 333 (26), 364-367.
    • Wallis, S. A., Baker, D. H., Meese, T. S., Georgeson, M. A., 2013. The slope of the psychometric function and non-stationarity of thresholds in spatiotemporal contrast vision. Vision Research 76, 1-10.
    • Watamaniuk, S. N. J., 1993. Ideal observer for discrimination of the global direction of dynamic random-dot stimuli. Journal of the Optical Society of America A 10 (1), 16-28.
    • Watamaniuk, S. N. J., Sekuler, R., 1992. Temporal and spatial integration in dynamic randomdot stimuli. Vision Research 32 (12), 2341-2347.
    • Watson, A. B., 1987. Estimation of local spatial scale. Journal of the Optical Society of America A 4 (8), 1579-1582.
    • Watson, A. B., Ahumada, A. J., 2005. A standard model for foveal detection of spatial contrast. Journal of Vision 5, 717-740.
    • Webb, B. S., Ledgeway, T., McGraw, P. V., 2007. Cortical pooling algorithms for judging global motion direction. Proceedings of the National Academy of Sciences of the United States of America 104 (9), 3532-3537.
    • Webb, B. S., Ledgeway, T., McGraw, P. V., 2010. Relating spatial and temporal orientation pooling to population decoding solutions in human vision. Vision research 50, 2274-2283.
    • Wetherill, G. B., 1963. Sequential Estimation of Quantal Response Curves. Journal of the Royal Statistical Society. Series B (Methodological) 25 (1), 1-48.
    • Wetherill, G. B., Levitt, H., 1965. Sequential estimation of points on a psychometric function. The British Journal of Mathematical and Statistical Psychology 18 (1), 1-10.
    • Wichmann, F. A., Hill, N. J., 2001. The psychometric function: I. Fitting, sampling, and goodness of fit. Perception And Psychophysics 63 (8), 1293-1313.
    • Wilson, H. R., Wilkinson, F., Asaad, W., 1997. Concentric Orientation Summation in Human Form Vision. Vision Research 37 (17), 2325-2330.
    • Wilson, J. R., Sherman, S. M., 1976. Receptive-Field Characteristics of Neurons in Cat Striate Cortex: Changes With Visual Field Eccentricity. Journal of Neurophysiology 39 (3), 512- 533.
    • Wong, E. H., Levi, D. M., 2005. Second-order spatial summation in amblyopia. Vision Research 45 (21), 2799-2809.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article