LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Niyazi, Hakan; Hall, James P; O'Sullivan, Kyra; Winter, Graeme; Sorensen, Thomas; Kelly, John M; Cardin, Christine J. (2012)
Publisher: Nature Publishing Group
Languages: English
Types: Article
Subjects:
The ruthenium complex [Ru(phen)2(dppz)] (where phen is a phenanthroline and dppz a dipyridyl–phenazine ligand) is\ud known as a ‘light switch’ complex because its luminescence in solution is significantly enhanced in the presence of DNA. This property is poised to serve in diagnostic and therapeutic applications, but its binding mode with DNA needs to be elucidated further. Here, we describe the crystal structures of the L enantiomer bound to two oligonucleotide duplexes. The dppz ligand intercalates symmetrically and perpendicularly from the minor groove of the d(CCGGTACCGG)2 duplex at the central TA/TA step, but not at the central AT/AT step of d(CCGGATCCGG)2. In both structures, however, a second ruthenium complex links the duplexes through the combination of a shallower angled intercalation into the C1C2/G9G10 step at the end of the duplex, and semi-intercalation into the G3G4 step of an adjacent duplex. The TA/TA specificity of the perpendicular intercalation arises from the packing of phenanthroline ligands against the adenosine residue.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Lerman, L.S., Structural considerations in the interaction of deoxyribonucleic acid and acridines. J. Mol. Biol. 3, 18-30 (1961).
    • 2. Shieh, H.-S., Berman, H.M., Dabrow, M. & Neidle, S., The structure of a drugdeoxydinucleoside phosphate complex; generalized conformational behaviour of intercalation complexes with RNA and DNA fragments. Nucl. Acids Res., 8, 85-98 (1980).
    • 3. Neidle, S. The molecular basis for the action of some DNA-binding drugs, Prog. Med. Chem., 16, 151-221 (1979).
    • 4. Todd, A.K., Adams, A., Thorpe, J.H., Denny, W.A, Wakelin, L.P. & Cardin, C.J., Major groove binding and 'DNA-induced' fit in the intercalation of a derivative of the mixed topoisomerase I/II poison N-(2-(dimethylamino)ethyl)acridine-4-carboxamide (DACA) into DNA: X-ray structure complexed to d(CG(5-BrU)ACG)2 at 1.3-A resolution. J. Med. Chem., 42, 536-540 (1999).
    • 5. Hopcroft, N. H., Brogden, A. L., Searcey, M., & Cardin, C.J., X-ray crystallographic study of DNA duplex cross-linking: simultaneous binding to two d(CGTACG)2 molecules by a bis(9-aminoacridine-4-carboxamide) derivative, Nucl. Acids Res. 34, 6663-6672 (2006).
    • 6. Brogden, A.l., Hopcroft, N.H., Searcey, M., & Cardin, C.J., Ligand Bridging of the DNA Holliday Junction: Molecular Recognition of a Stacked-X Four-Way Junction by a Small Molecule. Angew. Chem. Intern. Edn., 119, 3924-3928 (2007).
    • 7. Frederick, C. A. et al. Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry. 29, 2538-2549 (1990).
    • 8. Hou, M.-H., Robinson, H., Gao, Y.-G., Wang, A.H.-J. Crystal structure of actinomycin D bound to the CTG triplet repeat sequence linked to neurological diseases, Nucl. Acids Res., 30, 4910-4917.
    • 9. Garbett, N.C. & Chaires, J.B., Biophysical tools for Biologists: Vol. 1 In vitro techniques, Methods in Cell Biology, 84, 3-23 (2008).
    • 10. Wheate, N.J., Brodie, C.R., Collins, J.G., Kemp, S., Aldrich-Wright, J.R., DNA intercalators in cancer therapy: organic and inorganic drugs and their spectroscopic tools of analysis, Mini Reviews Med. Chem., 7, 627-648 (2007)
    • 11. Dai, J., Punchihewa, C., Mistry, P., Ooi, A.T., Yang, D., Novel DNA bisintercalation by MLN944, a potent clinical bisphenazine anticancer drug., J. Biol. Chem., 279, 46096-46103 (2004).
    • 12. Zeglis, B. M., Pierre, V. C. & Barton, J. K. Metallo-intercalators and metalloinsertors. Chem. Commun. 44, 4549-4696 (2007).
    • 13. Liu, H.-K. & Sadler, P.J., Metal complexes as DNA intercalators. Acc. Chem. Res., 44, 349-359 (2011).
    • 14. Boer, D. R., Canals, A. & Coll, M., DNA-binding drugs caught in action: the latest 3D pictures of drug-DNA complexes. Dalton Trans., 3, 399-414 (2009
    • 15. Chambron, J.C., Sauvage, J.P, Amouyal, E. & Koffi, P. Ru(bipy)2(dypyridophenazine)2+: a complex with a long range directed charge transfer excited state. Nouv. J. Chim.9, 527-9 (1985).
    • 16. McKinley, A. W., Lincoln, P. & Tuite, E. M. Environmental effects on the photophysics of transition metal complexes with dipyrido[2,3-1:3',2'-c]phenazine (dppz) and related ligands. Coord. Chem. Rev. 255, 2676-2692 (2011).
    • 17. Friedman, A. E. et al. A molecular light switch for DNA: Ru(bpy)2(dppz)2+ . J. Am. Chem. Soc. 112, 4960-4962 (1990).
    • 19. Smith, J. A., George, M. W. & Kelly, J. M. Transient spectroscopy of dipyridophenazine metal complexes which undergo photo-induced electron transfer with DNA. Coord. Chem. Rev. 255, 2666-2675 (2011).
    • 20. Elias, B., et al. Photooxidation of guanine by a ruthenium dipyridophenazine complex intercalated in a double-stranded polynucleotide monitored directly by picosecond visible and infrared transient absorption spectroscopy, Chem. Eur J.14, 369-375.
    • 21. Barton, J. K., Olmon, E. D. & Sontz, P. A. Metal complexes for DNA-mediated charge transport. Coord. Chem. Rev. 255, 619-634 (2011).
    • 22. Hartshorn, R. M. & Barton, J. K. Novel dipyridophenazine complexes of ruthenium(II): Exploring luminescent reporters of DNA. J. Am. Chem. Soc. 114, 5919-5925 (1992).
    • 23. Lincoln, P, Broo, A., and Nordén, B. Diastereomeric DNA-binding geometries of intercalating ruthenium (II) trischelates probed by linear dichroism: [Ru(phen)2dppz]2+ and [Ru(phen)2bdppz]2+. J. Amer. Chem. Soc. 118, 2644-2653.
    • 24. Haq, I. et al. Interaction of Δ- and Λ-Ru(phen)2dppz]2+ with DNA: A calorimetric and equilibrium binding study. J. Am. Chem. Soc. 117, 4788-4796 (1995).
    • 25. Hall, J. P. et al. Structure determination of an intercalation ruthenium dipyridophenazine complex which kinks DNA by semiintercalation of a tetraazaphenanthrene ligand. Proc. Natl. Acad. Sci. USA. 108, 17610-17614 (2011).
    • 26. Tuite, E., Lincoln, P. & Nordén, B. Photophysical evidence that Δ- and Λ- [Ru(phen)2(dppz)]2+ intercalate DNA from the minor groove. J. Am. Chem. Soc. 119, 239- 240 (1997).
    • 28. Eichman, B. F., Vargason, J. M., Mooers, B. H. M. & Shing Ho, P. The Holliday junction in an inverted repeated DNA sequence: Sequence effects on the structure of fourway junctions. P. Natl. Acad. Sci. USA. 97, 3971-3976 (2000).
    • 29. Hays, F. A., Teegarden, A., Jones, Z. J. R., Harms, M., Raup, D., Watson, J., Cavaliere, E. & Shing Ho, P. How sequence defines structure: A crystallographic map of DNA structure and conformation. P. Natl. Acad. Sci. USA. 102, 7157-7162 (2005). 30. Neidle, S. Principles of Nucleic Acid Structure, Academic Press, 2007, pp144-158.
    • 31. Pierre, V. C., Kaiser, J. T. & Barton, J. K. Insights into finding a mismatch through the structure of a mispaired DNA bound by a rhodium intercalator. P. Natl. Acad. Sci. USA. 104, 429-434 (2007).
    • 32. Smith, C. K., Davies, G.J., Dodson. E. J. & Moore, M.H. DNA-Nogalamycin interactions: the crystal structure of d(TGATCA) complexed with nogalamycin. Biochemistry, 34, 415-425 (1995).
    • 33. Brennaman, M.K., Meyer, T.J., Papanikolas, J.M., [Ru(bpy)2dppz]2+ light-switch mechanism in protic solvents as studies through temperature-dependent lifetime measurements. J. Phys. Chem. (A), 108, 9938-9944, (2004).
    • 34. Önfeld, T., Olofsson, J., Lincoln, P., & Nordén, B., Picosescond and steady state emission of [Ru(phen)2dppz]2+ in glycerol: anomalous temperature dependence. J. Phys. Chem (A), 107, 1000-1009, (2003).
    • 35. Olson, E.J.C., et al. First observation of the key intermediate in the 'light-switch' mechanism of [Ru(phen)2dppz]2+ . J.Amer. Chem., Soc., 119, 11458-11467, (1997).
    • 36. Lincoln, P., A generalised McGhee-von Hippel method for the cooperative binding of different competing ligands to an infinite one-dimensional lattice. Chem. Phys. Lett., 288, 647-656 (1998).
    • 37. Winter, G. Xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186-190 (2010).
    • 38. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795-800 (1993). 39. Evans, P. Scaling and assessment of data quality. Acta. Cryst. D. 62, 72-82 (2006).
    • 40. Emsley, P., Lohkamp, B., Scott, W. & Cowtan, K. Features and development of Coot. Acta. Cryst. D. 66, 486-501 (2010).
    • 41. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta. Cryst. D. 53, 240-255 (1997).
  • No related research data.
  • No similar publications.
  • BioEntity Site Name
    1mnvProtein Data Bank
    3u38Protein Data Bank
    4e95Protein Data Bank

Share - Bookmark

Cite this article