Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Songsorn, P.; Lambeth‑Mansell, Annie; Mair, J.L.; Haggett, M.; Fitzpatrick, B.L.; Ruffino, J.; Holliday, Adrian; Metcalfe, R.S.; Vollaard, N.B.J. (2016)
Publisher: Springer
Journal: European Journal of Applied Physiology
Languages: English
Types: Article
Subjects: High-intensity interval training, Sports sciences, 613 Personal health & safety, Sprint interval, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\text{V}}\text{O}}_{ 2} { \hbox{max} }$$\end{document} V ? O 2 max, VO2max, High-intensity interval training, SIT, Wingate sprint, Sprint interval, H1, RC1200 Sports Medicine, Physical activity, Original Article, Wingate sprint, Wellbeing, Sports, Exercise and Health Science Research Group, SIT
Purpose Sprint interval training (SIT) provides a potent stimulus for improving maximal aerobic capacity ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\text{V}}\text{O}}_{ 2} { \hbox{max} }$$\end{document} V ? O 2 max ), which is among the strongest markers for future cardiovascular health and premature mortality. Cycling-based SIT protocols involving six or more ?all-out? 30-s Wingate sprints per training session improve \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\text{V}}\text{O}}_{ 2} { \hbox{max} }$$\end{document} V ? O 2 max , but we have recently demonstrated that similar improvements in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\text{V}}\text{O}}_{ 2} { \hbox{max} }$$\end{document} V ? O 2 max can be achieved with as few as two 20-s sprints. This suggests that the volume of sprint exercise has limited influence on subsequent training adaptations. Therefore, the aim of the present study was to examine whether a single 20-s cycle sprint per training session can provide a sufficient stimulus for improving \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\text{V}}\text{O}}_{ 2} { \hbox{max} }$$\end{document} V ? O 2 max . Methods Thirty sedentary or recreationally active participants (10 men/20 women; mean???SD age: 24???6 years, BMI: 22.6???4.0?kg?m?2, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\text{V}}\text{O}}_{ 2} { \hbox{max} }$$\end{document} V ? O 2 max : 33???7?mL?kg?1?min?1) were randomised to a training group or a no-intervention control group. Training involved three exercise sessions per week for 4?weeks, consisting of a single 20-s Wingate sprint (no warm-up or cool-down). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\text{V}}\text{O}}_{ 2} { \hbox{max} }$$\end{document} V ? O 2 max was determined prior to training and 3 days following the final training session. Results Mean \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\text{V}}\text{O}}_{ 2} { \hbox{max} }$$\end{document} V ? O 2 max did not significantly change in the training group (2.15???0.62 vs. 2.22???0.64 L?min?1) or the control group (2.07???0.69 vs. 2.08???0.68 L?min?1; effect of time: P?=?0.17; group???time interaction effect: P?=?0.26). Conclusion Although we have previously demonstrated that regularly performing two repeated 20-s ?all-out? cycle sprints provides a sufficient training stimulus for a robust increase in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\text{V}}\text{O}}_{ 2} { \hbox{max} }$$\end{document} V ? O 2 max , our present study suggests that this is not the case when training sessions are limited to a single sprint.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allemeier CA, Fry AC, Johnson P, Hikida RS et al (1994) Effects of sprint cycle training on human skeletal muscle. J Appl Physiol (1985) 77:2385-2390
    • Bailey SJ, Wilkerson DP, Dimenna FJ, Jones AM (2009) Influence of repeated sprint training on pulmonary O2 uptake and muscle deoxygenation kinetics in humans. J Appl Physiol (1985) 106:1875-1887
    • Blair SN, Kohl HW 3rd, Barlow CE, Paffenbarger RS Jr et al (1995) Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA 273:1093-1098
    • Borg G (1970) Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med 2:92-98
    • Bouchard C, Blair SN, Katzmarzyk PT (2015) Less sitting, more physical activity, or higher fitness? Mayo Clin Proc 90:1533-1540
    • Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M et al (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586:151-160
    • Craig CL, Marshall AL, Sjostrom M, Bauman AE et al (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35:1381-1395
    • Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37:247-248
    • Fuentes T, Guerra B, Ponce-Gonzalez JG, Morales-Alamo D et al (2012) Skeletal muscle signaling response to sprint exercise in men and women. Eur J Appl Physiol 112:1917-1927
    • Garber CE, Blissmer B, Deschenes MR, Franklin BA et al (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43:1334-1359
    • Gibala MJ, Little JP, Macdonald MJ, Hawley JA (2012) Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol 590:1077-1084
    • Gillen JB, Gibala MJ (2014) Is high-intensity interval training a timeefficient exercise strategy to improve health and fitness? Appl Physiol Nutr Metab 39:409-412
    • Gillen JB, Percival ME, Skelly LE, Martin BJ et al (2014) Three minutes of all-out intermittent exercise per week increases skeletal muscle oxidative capacity and improves cardiometabolic health. PLoS One 9:e111489
    • Gist NH, Fedewa MV, Dishman RK, Cureton KJ (2014) Sprint interval training effects on aerobic capacity: a systematic review and meta-analysis. Sports Med 44:269-279
    • Guerra B, Guadalupe-Grau A, Fuentes T, Ponce-Gonzalez JG et al (2010) SIRT1, AMP-activated protein kinase phosphorylation and downstream kinases in response to a single bout of sprint exercise: influence of glucose ingestion. Eur J Appl Physiol 109:731-743
    • Hallal PC, Andersen LB, Bull FC, Guthold R et al (2012) Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet 380:247-257
    • Hazell TJ, Macpherson RE, Gravelle BM, Lemon PW (2010) 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. Eur J Appl Physiol 110:153-160
    • Ijichi T, Hasegawa Y, Morishima T, Kurihara T et al (2015) Effect of sprint training: training once daily versus twice every second day. Eur J Sport Sci 15:143-150
    • Keteyian SJ, Brawner CA, Savage PD, Ehrman JK et al (2008) Peak aerobic capacity predicts prognosis in patients with coronary heart disease. Am Heart J 156:292-300
    • Korkiakangas EE, Alahuhta MA, Laitinen JH (2009) Barriers to regular exercise among adults at high risk or diagnosed with type 2 diabetes: a systematic review. Health Promot Int 24:416-427
    • Lee DC, Sui X, Artero EG, Lee IM et al (2011) Long-term effects of changes in cardiorespiratory fitness and body mass index on allcause and cardiovascular disease mortality in men: the Aerobics Center Longitudinal Study. Circulation 124:2483-2490
    • MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS et al (1998) Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol (1985) 84:2138-2142
    • Macpherson RE, Hazell TJ, Olver TD, Paterson DH, Lemon PW (2011) Run sprint interval training improves aerobic performance but not maximal cardiac output. Med Sci Sports Exerc 43:115-122
    • McBride A, Ghilagaber S, Nikolaev A, Hardie DG (2009) The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab 9:23-34
    • McKenna MJ, Heigenhauser GJ, McKelvie RS, Obminski G et al (1997) Enhanced pulmonary and active skeletal muscle gas exchange during intense exercise after sprint training in men. J Physiol 501(Pt 3):703-716
    • Metcalfe RS, Babraj JA, Fawkner SG, Vollaard NB (2012) Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. Eur J Appl Physiol 112:2767-2775
    • Milanovic Z, Sporis G, Weston M (2015) Effectiveness of High-Intensity Interval Training (HIT) and continuous endurance training for VO2max Improvements: a systematic review and meta-analysis of controlled trials. Sports Med 45:1469-1481
    • Myers J, Prakash M, Froelicher V, Do D et al (2002) Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 346:793-801
    • Nalcakan GR (2014) The effects of sprint interval vs. continuous endurance training on physiological and metabolic adaptations in young healthy adults. J Hum Kinet 44:97-109
    • Parolin ML, Chesley A, Matsos MP, Spriet LL et al (1999) Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol 277:E890-E900
    • Pate RR, Pratt M, Blair SN, Haskell WL et al (1995) Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 273:402-407
    • Ross R, de Lannoy L, Stotz PJ (2015) Separate effects of intensity and amount of exercise on interindividual cardiorespiratory fitness response. Mayo Clin Proc 90:1506-1514
    • Sandvei M, Jeppesen PB, Stoen L, Litleskare S et al (2012) Sprint interval running increases insulin sensitivity in young healthy subjects. Arch Physiol Biochem 118:139-147
    • Sloth M, Sloth D, Overgaard K, Dalgas U (2013) Effects of sprint interval training on VO2max and aerobic exercise performance: a systematic review and meta-analysis. Scand J Med Sci Sports 23:e341-e352
    • Thomas S, Reading J, Shephard RJ (1992) Revision of the Physical Activity Readiness Questionnaire (PAR-Q). Can J Sport Sci 17:338-345
    • Weston M, Taylor KL, Batterham AM, Hopkins WG (2014) Effects of low-volume high-intensity interval training (HIT) on fitness in adults: a meta-analysis of controlled and non-controlled trials. Sports Med 44:1005-1017
    • Whyte LJ, Gill JM, Cathcart AJ (2010) Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism 59:1421-1428
    • Zelt JG, Hankinson PB, Foster WS, Williams CB et al (2014) Reducing the volume of sprint interval training does not diminish maximal and submaximal performance gains in healthy men. Eur J Appl Physiol 114:2427-2436
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.