LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Köhler, Susanne M.; Baillie, Les; Beyer, Wolfgang (2015)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: RS
While proving highly effective in controlling Anthrax in farm animals all over the world currently attenuated live anthrax vaccines employed in a veterinary context suffer from drawbacks such as residual virulence, short term protection, variation in quality and, most importantly, lack of efficacy if administered simultaneously with antibiotics. These limitations have stimulated the development of non-living component vaccines which induce a broad spectrum immune response capable of targeting both toxaemia (as in the case of PA based vaccines) and bacteraemia. To contribute to this several new approaches were tested in outbred NMRI mice for antibody titres and protectiveness. Plasmids encoding a recombinant toxin derived fusion peptide and a spore surface derived peptide were tested as DNA-vaccines in comparison to their protein counterparts utilising two adjuvant approaches and two DNA-vector backbones. The combination of two plasmids encoding LFD1PAD4-mIPS1 and TPA-BclAD1D3-LAMP1, when delivered by GeneGun, protected 90% of the animals against a lethal challenge with 25LD50 spores of the Ames strain of Bacillus anthracis. Single applications of either antigen component showed significantly lower protection rates, indicating the beneficial interaction between anti-spore and anti-toxin components for an acellular vaccine formulation.

Share - Bookmark

Cite this article