LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Maddison, Kathryn
Languages: English
Types: Doctoral thesis
Subjects: QR
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1.6 .6 . Mouse models o f Rett syndrome.
    • 1.6.7. Conditional alleles o f Mecp2.
    • 1.6 .8 . Elevated levels o f MeCP2 also cause a progressive neurological disorder.
    • 1.6.9. Neuropathological difference in the Rett syndrome brain.
    • 1.6.10. Rett Syndrome Causes Defects in Synaptic Elaboration and Pruning.
    • 1.6 .11. MeCP2 and neurogenesis - narrowing down the phenotype.
    • 1.7. MECP2 - A member o f the Methyl Binding Domain Family.
    • 1.7.1. MECP2A and MECP2B: alternative splicing o f MECP2.
    • 1.7.2. MECP2 - Function in vivo.
    • 1.7.3. MECP2 links DNA methylation to histone methylation.
    • 1.7.4. Is MeCP2 Really a Global Transcriptional Repressor? 1.7.5. MeCP2 Directly regulates Bdrtf and xHairy2a.
    • 1.7.6. MeCP2 and Bdnf. ' 1.7.7. Is Rett syndrome a disorder o f altered imprinting? 1.8 . Examining the role o f MBD proteins in the murine intestine.
    • 2.1. Immunohistochemistry/stains.
    • 2.1.1 H&E (Haematoxylin and Eosin) staining 2.1.2. GIP (Gastrointestinal polypeptide) staining.
    • 2.1.3.Grimelius (Enteroendocrine cell stain.) 2.1.4. Alcian Blue.
    • 2.1.5.Alkaline phosphatase.
    • 2.1.6 . BrdU (Bromodeoxyuridine staining) 2.2. Genotyping.
    • 2.2.1. DNA Purification: Puregene method 2.2.2. Mecp2 PCR.
    • 2.2.3. Blg-Cre PCR.
    • 2.2.4. Ah-Cre PCR 2.2.5. Mbd4 PCR 2.2.6. Mlh i PCR 2.2.7. Ap(Pox PCR 2.2.8. LacZ (Rosa26R) PCR.
    • 2.3. LacZ Staining o f small intestinal wholemounts.
    • 2.3.1. DTT Demucifying Solution.
    • 2.3.2. Wax Plates.
    • 2.3.3. Mammary Wholemounts.
    • 2.3.4. 2% Paraformaldehyde.
    • 2.4. Scoring Apoptosis.
    • 2.5. Preparation o f Murine Colonic / Small Intestinal Crypts.
    • 2.5.1. Short-Term Culture o f Colonic Crypts.
    • 2.6. Cell Culture.
    • 2.6.1. Preparation o f murine embryonic kidney cells.
    • 2.6.2. To trypsinise the cells (for passaging) 2.7. RNA extraction and preparation for Affymetrix Microarray.
    • 2.7.1. RNA Extraction From Intestinal Tissue.
    • 76 76 77 79 80 81 81 82 82 83 84 85 86 86 87 88 89 90 90 90 91 91 91 92 92 92 93 94 94 2.7.2. Fragmentation buffer 2.7.3. Obtaining RNA from Tissue Samples.
    • 2.7.4. First Strand cDNA Synthesis.
    • 2.7.5. Second Strand Synthesis.
    • 2.7.5. Clean-Up o f Double-Stranded cDNA.
    • 2.7.6. In Vitro Transcription.
    • 2.7.7. Clean-Up o f cRNA 2.7.8. Ethanol Precipitation.
    • 2.7.9. cRNA Fragmentation.
    • 2.8. RNA Gel.
    • 2.8.2. IOx MOPS.
    • 2.8.3. Checking the RNA Quality.
    • 2.9. RNA extraction and preparation for RT-PCR 2.9.1. Obtaining RNA from Tissue Samples.
    • 2.10. Making cDNA from total cellular RNA.
    • 2.11. Checking for genomic DNA contamination.
    • 2.12. RT-PCR.
    • Fig 3.1. Prokaryotic and eukaryotic repair........................................................................ p. 109.
    • Fig 3.2. Apoptosis triggered through the fas receptor pathway.................................... p. 114.
    • Fig 3.3. Anoikis in isolated murine small intestinal crypts............................................. p.l 18 Fig 3.4. Loss of MBD4 reduces anoikis in isolated small intestinal crypts..................p. 120.
    • Fig 3.5. Apoptosis in the small intestine o f MBD4-deficient mice in response to Fas Ligand......................................................................................................................... p. 122 Fig 3.9. Loss o f Mlhl reduces the apoptotic response to Fas ligand............................. p. 128 Fig 3.10. Loss o f Mlhl increases the mitotic response to Fas ligand............................ p. 129 Fig 3.11. 8 pg Fas ligand induces extensive liver apoptosis at 6 hours..........................p. 130 Fig 3.12. M lhl " and M lh l' ' mice show high variability in rates o f apoptosis; small intestine....................................................................................................................... p. 132
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article