Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Schiemann, Reinhard; Demory, Marie-Estelle; Mizielinski, Mattew S.; Roberts, Malcolm J.; Shaffrey, Len C; Strachan, Jane; Vidale, Pier Luigi (2014)
Publisher: Springer
Languages: English
Types: Article
The dependence of the annual mean tropical precipitation on horizontal resolution is investigated in the atmospheric version of the Hadley Centre General Environment Model (HadGEM1). Reducing the grid spacing from about 350 km to 110 km improves the precipitation distribution in most of the tropics. In particular, characteristic dry biases over South and Southeast Asia including the Maritime Continent as well as wet biases over the western tropical oceans are\ud reduced. The annual-mean precipitation bias is reduced by about one third over the Maritime Continent and the neighbouring ocean basins associated with it via the Walker circulation. Sensitivity experiments show that much of the improvement with resolution in the Maritime Continent region is due to the specification of better resolved surface boundary conditions (land fraction, soil and vegetation parameters) at the higher resolution.\ud It is shown that in particular the formulation of the coastal tiling scheme may cause resolution sensitivity of the mean simulated climate. The improvement in the tropical mean precipitation in this region is not primarily associated with the better representation of orography at\ud the higher resolution, nor with changes in the eddy transport of moisture. Sizeable sensitivity to changes in\ud the surface fields may be one of the reasons for the large variation of the mean tropical precipitation distribution\ud seen across climate models.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979Present). J Hydrometeorol 4(6):1147-1167. doi:10.1175/ 1525-7541(2003)004\1147:TVGPCP[2.0.CO;2
    • Boville BA (1991) Sensitivity of simulated climate to model resolution. J Clim 4(5):469-485. doi:10.1175/1520-0442(1991) 004\0469:SOSCTM[2.0.CO;2
    • Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res 111(D12):D12106. doi:10.1029/2005JD006548
    • Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74(368):829. doi:10. 2307/2286407
    • Cleveland WS (1981) LOWESS: a program for smoothing scatterplots by Robust locally weighted regression. Am Stat 35(1):54. doi:10.2307/2683591
    • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Ho´lm EV, Isaksen L, Ka˚llberg P, Ko¨hler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, The´paut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553-597
    • Demory ME, Vidale PL, Roberts MJ, Berrisford P, Strachan J, Schiemann R, Mizielinski MS (2013) The role of horizontal resolution in simulating drivers of the global hydrological cycle. Clim Dyn. doi:10.1007/s00382-013-1924-4
    • Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang ZL, Zhang M (2011) The community climate system model version 4. J Clim 24(19):4973-4991. doi:10.1175/ 2011JCLI4083.1
    • Hack JJ, Caron JM, Yeager SG, Oleson KW, Holland MM, Truesdale JE, Rasch PJ (2006) Simulation of the global hydrological cycle in the CCSM Community Atmosphere Model version 3 (CAM3): mean features. J Clim 19(11):2199-2221. doi:10.1175/JCLI3755.1
    • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686-5699. doi:10.1175/ JCLI3990.1
    • Hewitt HT, Copsey D, Culverwell ID, Harris CM, Hill RSR, Keen aB, McLaren AJ, Hunke EC (2011) Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system. Geosci Model Dev 4(2):223-253. doi:10.5194/gmd-4-223-2011
    • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36(17):L17808. doi:10.1029/2009GL040000
    • Johns TC, Durman CF, Banks HT, Roberts MJ, McLaren AJ, Ridley JK, Senior CA, Williams KD, Jones A, Rickard GJ, Cusack S, Ingram WJ, Crucifix M, Sexton DMH, Joshi MM, Dong BW, Spencer H, Hill RSR, Gregory JM, Keen AB, Pardaens AK, Lowe JA, Bodas-Salcedo A, Stark S, Searl Y (2006) The New Hadley Centre Climate Model (HadGEM1): evaluation of coupled simulations. J Clim 19(7):1327-1353. doi:10.1175/ JCLI3712.1
    • Manabe S, Smagorinsky J, Holloway JL, Stone HM (1970) Simulated climatology of a general circulation model with a hydrologic cycle. Mon Weather Rev 98(3):175-212. doi:10.1175/1520- 0493(1970)098\0175:SCOAGC[2.3.CO;2
    • Martin GM, Ringer MA, Pope VD, Jones A, Dearden C, Hinton TJ (2006) The physical properties of the atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part I: model description and global climatology. J Clim 19(7):1274-1301. doi:10.1175/JCLI3636.1
    • Martin GM, Milton SF, Senior CA, Brooks ME, Ineson S, Reichler T, Kim J (2010) Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J Clim 23(22):5933-5957. doi:10.1175/2010JCLI3541.1
    • Neale R, Slingo J (2003) The Maritime Continent and its role in the global climate: a GCM study. J Clim 16(5):834-848. doi:10. 1175/1520-0442(2003)016\0834:TMCAIR[2.0.CO;2
    • Pope VD, Stratton RA (2002) The processes governing horizontal resolution sensitivity in a climate model. Clim Dyn 19(3-4):211-236. doi:10.1007/s00382-001-0222-8
    • Qian JH (2008) Why precipitation is mostly concentrated over islands in the Maritime Continent. J Atmos Sci 65(4):1428-1441. doi:10.1175/2007JAS2422.1
    • Randall D, Wood R, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer R, Sumi A, Taylor K (2007) Climate models and their evaluation. In: Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, chap Climate Mo, pp 589-662
    • Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicek M, Ansell TJ, Tett SFB (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J Clim 19(3):446-469. doi:10.1175/JCLI3637.1
    • Ringer MA, Martin GM, Greeves CZ, Hinton TJ, James PM, Pope VD, Scaife AA, Stratton RA, Inness PM, Slingo JM, Yang GY (2006) The physical properties of the atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part II: aspects of variability and regional climate. J Clim 19(7):1302-1326. doi:10.1175/JCLI3713.1
    • Roberts MJ, Banks H, Gedney N, Gregory J, Hill R, Mullerworth S, Pardaens A, Rickard G, Thorpe R, Wood R (2004) Impact of an eddy-permitting ocean resolution on control and climate change simulations with a global coupled GCM. J Clim 17(1):3-20. doi:10.1175/1520-0442(2004)017\0003:IOAEOR[2.0.CO;2
    • Roberts MJ, Clayton A, Demory ME, Donners J, Vidale PL, Norton W, Shaffrey L, Stevens DP, Stevens I, Wood RA, Slingo J (2009) Impact of resolution on the tropical Pacific circulation in a matrix of coupled models. J Clim 22(10):2541-2556. doi:10. 1175/2008JCLI2537.1
    • Rodwell MJ, Hoskins BJ (1996) Monsoons and the dynamics of deserts. Q J R Meteorol Soc 122(534):1385-1404. doi:10.1002/ qj.49712253408
    • Senior CA (1995) The dependence of climate sensitivity on the horizontal resolution of a GCM. J Clim 8(11):2860-2880. doi:10.1175/1520-0442(1995)008\2860:TDOCSO[2.0.CO;2
    • Shaffrey LC, Stevens I, Norton WA, Roberts MJ, Vidale PL, Harle JD, Jrrar A, Stevens DP, Woodage MJ, Demory ME, Donners J, Clark DB, Clayton A, Cole JW, Wilson SS, Connolley WM, Davies TM, Iwi AM, Johns TC, King JC, New AL, Slingo JM, Slingo A, Steenman-Clark L, Martin GM (2009) U.K. HiGEM: the New U.K. high-resolution global environment modelmodel description and basic evaluation. J Clim 22(8):1861-1896. doi:10.1175/2008JCLI2508.1
    • Slingo J, Inness P, Neale R, Woolnough S, Yang Gy (2003) Scale interactions on diurnal to seasonal timescales and their relevance to model systematic errors. Ann Geophys 46(1):139-155. doi:10. 4401/ag-3383
    • Slingo J, Bates K, Nikiforakis N, Piggott M, Roberts M, Shaffrey L, Stevens I, Vidale PL, Weller H (2009) Developing the nextgeneration climate system models: challenges and achievements. Philos Trans Ser A, Math Phys Eng Sci 367(1890):815-831 doi:10.1098/rsta.2008.0207
    • Stephenson DB, Chauvin F, Royer JF (1998) Simulation of the Asian summer monsoon and its dependence on model horizontal resolution. J Meteorl Soc Japan 76(2):237-265
    • Strachan J (2007) Understanding and modelling the climate of the Maritime Continent. Phd thesis, University of Reading
    • Strachan J, Vidale PL, Hodges K, Roberts M, Demory ME (2012) Investigating global tropical cyclone activity with a hierarchy of AGCMs: the role of model resolution. J Clim. doi:10.1175/JCLID-12-00012.1
    • Taylor KE, Williamson D, Zwiers F (2000) The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. Technical report 60, PCMDI
    • Toniazzo T, Mechoso CR, Shaffrey LC, Slingo JM (2009) Upperocean heat budget and ocean eddy transport in the south-east Pacific in a high-resolution coupled model. Clim Dyn 35(7- 8):1309-1329. doi:10.1007/s00382-009-0703-8
    • Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nat 441(7089):73-76. doi:10.1038/nature04744
    • Walters DN, Best MJ, Bushell AC, Copsey D, Edwards JM, Falloon PD, Harris CM, Lock AP, Manners JC, Morcrette CJ, Roberts MJ, Stratton RA, Webster S, Wilkinson JM, Willett MR, Boutle LA, Earnshaw PD, Hill PG, MacLachlan C, Martin GM, MoufoumaOkia W, Palmer MD, Petch JC, Rooney GG, Scaife AA, Williams KD (2011) The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations. Geosci Model Dev 4(4):919-941. doi:10.5194/gmd-4-919-2011
    • Wang B, Lee JY, Kang IS, Shukla J, Kug JS, Kumar A, Schemm J, Luo JJ, Yamagata T, Park CK (2007) How accurately do coupled climate models predict the leading modes of Asian-Australian monsoon interannual variability? Clim Dyn 30(6):605-619. doi:10.1007/s00382-007-0310-5
    • Williamson DL, Kiehl JT, Hack JJ (1995) Climate sensitivity of the NCAR Community Climate Model (CCM2) to horizontal resolution. Clim Dyn 11(7):377-397. doi:10.1007/BF00209513
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article