LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Readman, Jennifer Elizabeth; Lennie, Alistair; Hrilijac, Joseph A (2014)
Publisher: Blackwell
Languages: English
Types: Article
Subjects: F100

Classified by OpenAIRE into

mesheuropmc: macromolecular substances
The high-pressure structural chemistry of -zirconium phosphate, -Zr(HPO4) 2H2O, was studied using in-situ high-pressure diffraction and synchrotron radiation. The layered phosphate was studied under both hydrostatic and non-hydrostatic conditions and Rietveld refinement carried out on the resulting diffraction patterns. It was found that under hydrostatic conditions no uptake of additional water molecules from the pressure-transmitting medium occurred, contrary to what had previously been observed with some zeolite materials and a layered titanium phosphate. Under hydrostatic conditions the sample remained crystalline up to 10 GPa, but under non-hydrostatic conditions the sample amorphized between 7.3 and 9.5 GPa. The calculated bulk modulus, K 0 = 15.2 GPa, showed the material to be very compressible with the weak linkages in the structure of the type Zr—O—P.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alberti, G. (1978). Acc. Chem. Res. 11, 163-170.
    • Angel, R. J. (2000). Rev. Mineral. Geochem. 41, 35-59.
    • Barnes, P. W., Woodward, P. M., Lee, Y., Vogt, T. & Hriljac, J. A. (2003). J. Am. Chem. Soc. 125, 4572-4579.
    • Bassett, W. A. (2006). J. Phys. Condens. Matter, 18, S921-S931.
    • Bennett, T. D., Simoncic, P., Moggach, S. A., Gozzo, F., Macchi, P., Keen, D. A., Tan, J. & Cheetham, A. K. (2011). Chem. Commun. 47, 7983-7985.
    • Be´ rar, J.-F. & Lelann, P. (1991). J. Appl. Cryst. 24, 1-5.
    • Chapman, K. W., Halder, G. J. & Chupas, P. J. (2008). J. Am. Chem. Soc. 130, 10524-10526.
    • Clearfield, A. & Costantino, U. (1996). Comprehensive Supramolecular Chemistry, Vol. 17, p. 107. Oxford: Pergamon Press.
    • Clearfield, A., Landis, A. L., Medina, A. S. & Troup, J. H. (1973). J. Inorg. Nucl. Chem. 35, 1099-1108.
    • Colligan, M., Forster, P. M., Cheetham, A. K., Lee, Y., Vogt, T. & Hriljac, J. A. (2004). J. Am. Chem. Soc. 126, 12015-12022.
    • Costantino, U. (1979). J. Chem. Soc. Dalton Trans. pp. 402-405.
    • Gatta, G. D. (2008). Z. Kristallogr. 223, 160-170.
    • Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Hausermann, D. (1996). High Pressure Res. 14, 235-248.
    • Hazen, R. M. (1983). Science, 219, 1065-1067.
    • Hazen, R. M. & Finger, L. W. (1984). J. Appl. Phys. 56, 1838-1840.
    • Hriljac, J. A. (2006). Crystallogr. Rev. 12, 181-193.
    • Larson, A. C. & Von Dreele, R. B. (2004). GSAS. Report LAUR 86- 748. Los Alamos National Laboratory, New Mexico, USA.
    • Lee, Y., Hriljac, J. A., Parise, J. B. & Vogt, T. (2006). Am. Mineral. 91, 247-251.
    • Lee, Y., Hriljac, J. A., Vogt, T., Parise, J. B. & Artioli, G. (2001). J. Am. Chem. Soc. 123, 12732-12733.
    • Lee, Y., Seoung, D., Liu, D., Park, M. B., Hong, S. B., Chen, H., Bai, J., Kao, C., Vogt, T. & Lee, Y. (2011). Am. Mineral. 96, 393-401.
    • Lee, Y., Vogt, T., Hriljac, J. A., Parise, J. B. & Artioli, G. (2002). J. Am. Chem. Soc. 124, 5466-5475.
    • Mao, H. K., Xu, J. & Bell, P. M. (1986). J. Geophys. Res. B Solid Earth Planets, 91, 4673-4676.
    • Nakano, S., Sasaki, T., Takemura, K. & Watanabe, M. (1998). Chem. Mater. 10, 2044-2046.
    • Perottoni, C. & da Jornada, J. (1997). Phys. Rev. Lett. 78, 2991- 2994.
    • Stixrude, L. (2002). J. Geophys. Res. 107, 2327-2336.
    • Talyzin, A. V., Sundqvist, B., Szabo´, T., D e´ka´ ny, I. & Dmitriev, V. (2009). J. Am. Chem. Soc. 131, 18445-18449.
    • Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.
    • In-situ high-pressure diffraction Trobajo, C., Khainakov, S. A., Espina, A. & Garc´ıa, J. R. (2000). Chem. Mater. 12, 1787-1790.
    • Troup, J. M. & Clearfield, A. (1977). Inorg. Chem. 16, 3311-3314.
    • Yamamoto, K., Hasegawa, Y. & Nikki, K. (1998). J. Inclusion Phenom. Mol. Recognit. Chem. 31, 289-303.
    • You, S., Kunz, D., Sto¨ ter, M., Kalo, H., Putz, B., Breu, J. & Talyzin, A. V. (2013). Angew. Chem. Int. Ed. 52, 3891-3895.
    • Zhai, S., Xue, W., Yamazaki, D., Shan, S., Ito, E., Tomioka, N., Shimojuku, A. & Funakoshi, K. (2011). Phys. Chem. Miner. 38, 357-361.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article