LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Moxon, Samuel R.; Smith, Alan M. (2016)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: Q1, RS

Classified by OpenAIRE into

mesheuropmc: technology, industry, and agriculture
Successful culturing of tissues within polysaccharide hydrogels is reliant upon specific mechanical properties. Namely, the stiffness and elasticity of the gel have been shown to have a profound effect on cell behaviour in 3D cell cultures and correctly tuning these mechanical properties is critical to the success of culture. The usual way of tuning mechanical properties of a hydrogel to suit tissue engineering applications is to change the concentration of polymer or its cross-linking agents. In this study sonication applied at various amplitudes was used to control mechanical properties of gellan gum solutions and gels. This method enables the stiffness and elasticity of gellan gum hydrogels cross-linked with DMEM to be controlled without changing either polymer concentration or cross-linker concentration. Controlling the mechanical behaviour of gellan hydrogels impacted upon the activity of alkaline phosphatase (ALP) in encapsulated MC3T3 pre-osteoblasts. This shows the potential of applying a simple technique to generate hydrogels where tissue-specific mechanical properties can be produced that subsequently influence cell behaviour.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Drury, J.L. Dennis, R.G. Mooney, D.J. (2004). The tensile properties of alginate hydrogels, Biomaterials, 25, 3187-3199.
    • [2] Hishikawa, K. Miura, S. Marumo, T. Yoshioka, H. Mori, Y. Takato, T. Fujita, T. (2004). Gene expression profile of human mesenchymal stem cells during osteogenesis in threedimensional thermoreversible gelation polymer, Biochemical and Biophysical Research Communications, 317 (4), 1103-1107.
    • [3] Fan, J. Gong, Y. Ren, L. Varshney, R.R. Cai, D. Wang, D.A. (2010). In vitro engineered cartilage using synovium-derived mesenchymal stem cells with injectable gellan hydrogels, Acta Biomaterialia, 6, 1178-1185.
    • [4] Park, H. Temenoff, J.S. Tabata, Y. Caplan, A.I. Mikos, A.G. (2007). Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering, Biomaterials, 28 (21), 3217-3227.
    • [5] Kim, J. Kim, I.S. Cho, T.H. Lee, K.B. Hwang, S.J. Tae, G. Noh, I. Lee, S.H. Park, Y. Sun, K. (2007). Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells, Biomaterials, 28 (10), 1830- 1837.
    • [6] Drury, J.L. Mooney, D.J. (2003). Hydrogels for tissue engineering: scaffold design variables and applications, Biomaterials, 24 (24), 4337-4351.
    • [7] Du, H. Hamilton, P. Reilly, M. Ravi, N. (2012). Injectable in situ physically and chemically crosslinkable gellan hydrogel, Macromolecular Bioscience, 12, 952-961.
    • [8] Osmalek, T. Froelich, A. Tasarek, S. (2014). Application of gellan gum in pharmacy and medicine, International Journal of Pharmaceutics, 466 (1-2), 328-340.
    • [9] Smith, AM. Shelton, R.M. Perrie, Y. Harris, J.J. (2007). An initial evaluation of gellan gum as a material for tissue engineering applications, Journal of Biomaterial Applications, 22 (3), 241-254.
    • [10] Jahromi, S.H. Grover, L.M. Paxton, J.Z. Smith, A.M, (2011). Degradation of polysaccharide hydrogels seeded with bone marrow stromal cells, Journal of the Mechanical Behavior of Biomedical Materials, 4 (7), 1157-1166.
    • [11] Oliveira, J.T. Gardel, L.S. Rada, T. Martins, L. Gomes, M.E. Reis, R.L. (2010). Injectable gellan gum hydrogels with autologous cells for the treatment of rabbit articular cartilage defects, Journal of Orthopaedic Research, 28, 1193-1199.
    • [12] Chandrasekaran, R. Millane, R.P. Arnott, S. Atkins, E.D.T. (1998). The Crystal Structure of Gellan, Carbohydrate Research, 175 (1), 1-15.
    • [13] O'Neill, M.A. Selvendran, R.R. Morris, V.J. (1983). Structure of the Acidic Extracellular Gelling Polysaccharide Produced by Pseudomonas elodea, Carbohydrate Research, 124 (1), 123-133.
    • [14] Morris, E.R. Gothard, M.G.E. Hember, M.W.N. Manning, C.E. Robinson, G. (1996) Conformational and Rheological Transitions of Welan, Rhamsan and Acylated Gellan, Carbohydrate Polymers, 30 (2-3), 165-175.
    • [15] Engler, A.J. Sen, S. Sweeney, H.L. Discher, D.E. (2006). Matrix elasticity directs stem cell lineage specification, Cell, 126 (4), 677-689.
    • [16] Dess, M. Borzacchiello, A. Mohamed, T.H.A. Abdel-Fattah, W.I. Ambrosio, L. (2013). Novel biomimetic thermosensitive b-tricalcium phosphate/chitosan-based hydrogels for bone tissue engineering, Journal of Biomedical Materials Research Part A, 101A (10), 2984-2993.
    • [17] Rafat, M. Koh, L.B. Islam, M.M. Liederberg, B.O. Griffith, M. (2012). Highly elastic epoxy cross-linked collagen hydrogels for corneal tissue engineering, Acta Ophthalmologica, 90, (s249)
    • [18] Annabi, N. Tsang, K. Mithieux, S.M. Nikkhah, M. Ameri, A. Khademhosseini, A. Weiss, A.S. (2013). Highly Elastic Micropatterned Hydrogel for Engineering Functional Cardiac Tissue, Advanced Functional Materials, 23 (39), 4950-4959.
    • [20] Je-Yong, C. Byung-Heon, L. Keun-Bae, S. Rang-Woon, P. In-San, K. Kun-Young, S. Joon-Seung, J. Hyun-Mo. R. (1996) Expression Patterns of Bone-Related Proteins During Osteoblastic Differentiation in MC3T3-El Cells, Journal of Cellular Biochemistry, 61, 609- 618.
    • [21] Franceschi, R.T. Iyer, B.S. (1992). Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells, Journal of Bone and Mineral Research, 7 (2), 235-246.
    • [22] Ellis, G.E. Boesze-Battaglia, K. (2007), The role of alkaline phosphatase in mineralization, Current Opinion in Orthopaedics, 18 (5), 444-448. [24] D'Arrigo, G. Meo, C.D. Gaucci, E. Chichiarelli, S. Coviello, T. Capitani, D. Alhaique, F. Matricardi, P. (2012). Self-assembled gellan-based nanohydrogels as a tool for prednisolone delivery, Soft Matter, 8 (45), 11557-11564.
    • [26] Huggins, M.L. (1942). The Viscosity of Dilute Solutions of Long-chain Molecules. IV. Dependence on Concentration, Journal of the American Chemical Society, 64, 2716-2718.
    • [27] Kraemer, E.O. (1938). Molecular weights of cellulose and cellulose derivatives, Industrial and Engineering Chemistry Research, 30, 1200-1203.
    • [28] Taylor, D.L. Ferris, C.J. Maniego, A.R. Castignolles, P. Panhuis, M. in het. Gaborieau, M. (2012). Characterization of gellan gum by capillary electrophoresis, Australian Journal of Chemistry, 65 (8), 1156-1164.
    • [29] Morris, E.R. Nishinari, K. Rinaudo, M. (2012). Gelation of gellan - A review, Food Hydrocolloids, 28 (2), 373-411.
    • [30] Mahdi, M.H. Conway, B.R. Smith, A.M. (2014) Evaluation of gellan gum fluid gels as modified release oral liquids, International Journal of Pharmaceutics, 475, 335-343
    • [31] G. Sworn, G.R. Sanderson, W. Gibson (1995) Gellan gum fluid gels, Food Hydrocolloids, 9, 265-271
    • [32] Bratosin, D. Mitrofan, L. Palii, C. Estaquier, J. Montreuil, J. (2005). Novel Fluorescence Assay Using Calcein-AM for the Determination of Human Erythrocyte Viability and Aging, Cytometry Part A, 66A, 78-84
    • [33] Banerjee, A. Majumder, P. Sanyal, S. Singh, J. Jana, K. Das, C. Dasgupta, D. (2014). The DNA intercalators ethidium bromide and propidium iodide also bind to core histones, FEBS Open Bio, 4, 251-259
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article