Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
ATLAS Collaboration (2016)
Publisher: Springer Verlag
Languages: English
Types: Article
Subjects: scattering [p p], Regular Article - Experimental Physics, Subatomic Physics, branching ratio: upper limit [cross section], ATLAS, mass dependence, Engineering (miscellaneous), Higgs particle, doublet [Higgs particle], hadroproduction [Higgs particle], Higgs bosons; Z boson, pp collisions; ATLAS Detector, 530, QC, lepton, mass [boson], branching ratio [boson], heavy [resonance], Settore FIS/04 - Fisica Nucleare e Subnucleare, hadron, High Energy Physics - Experiment, leptonic decay [resonance], CERN LHC Coll, p p: colliding beams ; Higgs particle: hadroproduction ; Higgs particle: doublet ; tau: pair production ; boson: mass ; minimal supersymmetric standard model: parameter space ; cross section: branching ratio: upper limit ; boson: leptonic decay ; resonance: heavy ; resonance: leptonic decay ; flavor: model ; p p: scattering ; mass dependence ; ATLAS ; CERN LHC Coll ; background ; benchmark ; experimental results ; 13000 GeV-cms, model [flavor], mass [up], pair production [tau], experimental results, /dk/atira/pure/researchoutput/pubmedpublicationtype/D016428, Subatomär fysik, decay [boson], 13000 GeV-cms, benchmark, leptonic decay [boson], Science & Technology, background, Settore FIS/01 - Fisica Sperimentale, colliding beams [p p], Engineering (miscellaneous); Physics and Astronomy (miscellaneous), Journal Article, parameter space [minimal supersymmetric standard model], Physics and Astronomy (miscellaneous)
ddc: ddc:500.2, ddc:530
A search for neutral Higgs bosons of the minimal supersymmetric standard model (MSSM) and for a heavneutral \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z^{\prime }$$\end{document}Z′ boson is performed using a data sample corresponding to an integrated luminosity of 3.2 fb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}-1 from proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = 13$$\end{document}s=13  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {TeV}}$$\end{document}TeV recorded by the ATLAS detector at the LHC. The heavy resonance is assumed to decay to a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau ^+ \tau ^-$$\end{document}τ+τ- pair with at least one \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}τ lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2–1.2  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {TeV}}$$\end{document}TeV for the MSSM neutral Higgs bosons and 0.5–2.5  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {TeV}}$$\end{document}TeV for the heavy neutral \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z^{\prime }$$\end{document}Z′ boson. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in MSSM and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z^{\prime }$$\end{document}Z′ benchmark scenarios. The most stringent constraints on the MSSM \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_A$$\end{document}mA–\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan \beta $$\end{document}tanβ space exclude at 95 % confidence level (CL) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan \beta > 7.6$$\end{document}tanβ>7.6 for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_A = 200$$\end{document}mA=200 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {GeV}$$\end{document}GeV in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{h}^{\text {mod+}}$$\end{document}mhmod+ MSSM scenario. For the Sequential Standard Model, a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z^{\prime }_\mathrm {SSM}$$\end{document}ZSSM′ mass up to 1.90  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {TeV}}$$\end{document}TeV is excluded at 95 % CL and masses up to 1.82–2.17  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {TeV}}$$\end{document}TeV are excluded for a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z^{\prime }_{\mathrm {SFM}}$$\end{document}ZSFM′ of the strong flavour model.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex]
    • 2. CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex]
    • 3. ATLAS Collaboration, Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector. Eur. Phys. J. C 75, 476 (2015). arXiv:1506.05669 [hep-ex]
    • 4. ATLAS Collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at √s = 7 and 8 TeV in the ATLAS experiment. Eur. Phys. J. C 76, 6 (2016). arXiv:1507.04548 [hep-ex]
    • 5. C.M.S. Collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV. Eur. Phys. J. C 75, 212 (2015). arXiv:1412.8662 [hep-ex]
    • 6. C.M.S. Collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV. Phys. Rev. D 92, 012004 (2015). arXiv:1411.3441 [hep-ex]
    • 7. ATLAS and CMS Collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV (2015). http://cdsweb.cern.ch/ record/2052552
    • 8. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321 (1964)
    • 9. P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132 (1964)
    • 10. P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508 (1964)
    • 11. P.W. Higgs, Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156 (1966)
    • 12. G. Guralnik, C. Hagen, T. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585 (1964)
    • 13. T. Kibble, Symmetry breaking in non-Abelian gauge theories. Phys. Rev. 155, 1554 (1967)
    • 14. A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model. Phys. Rept. 459, 1 (2008). arXiv:hep-ph/0503173
    • 15. G.C. Branco et al., Theory and phenomenology of two-Higgsdoublet models. Phys. Rept. 516, 1 (2012). arXiv:1106.0034 [hepph]
    • 16. P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions. Phys. Lett. B 64, 159 (1976)
    • 17. P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions. Phys. Lett. B 69, 489 (1977)
    • 18. G.R. Farrar, P. Fayet, Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Phys. Lett. B 76, 575 (1978)
    • 19. P. Fayet, Relations between the masses of the superpartners of leptons and quarks, the goldstino couplings and the neutral currents. Phys. Lett. B 84, 416 (1979)
    • 20. S. Dimopoulos, H. Georgi, Softly broken supersymmetry and SU(5). Nucl. Phys. B 193, 150 (1981)
    • 21. M. Carena et al., MSSM Higgs Boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle. Eur. Phys. J. C 73, 2552 (2013). arXiv:1302.7033 [hep-ph]
    • 22. A. Djouadi et al., The post-Higgs MSSM scenario: Habemus MSSM? Eur. Phys. J. C 73, 2650 (2013). arXiv:1307.5205 [hepph]
    • 23. E. Bagnaschi et al., Benchmark scenarios for low tan β in the MSSM. LHCHXSWG-2015-002 (2015). http://cdsweb.cern.ch/ record/2039911
    • 24. ALEPH, DELPHI, L3, and OPAL Collaborations, G. Abbiendi et al., Search for neutral MSSM Higgs bosons at LEP. Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042 [hep-ex]
    • 25. Tevatron New Phenomena & Higgs Working Group Collaboration, B. Doug et al., Combined CDF and D0 upper limits on MSSM Higgs boson production in τ τ final states with up to 2.2 f b1 (2010). arXiv:1003.3363 [hep-ex]
    • 26. CDF Collaboration, T. Aaltonen et al., Search for Higgs bosons predicted in two-Higgs-doublet models via decays to τ l epton pairs in 1.96 TeV proton-antiproton collisions. Phys. Rev. Lett. 103, 201801 (2009). arXiv:0906.1014[hep-ex]
    • 27. D0 Collaboration, V.M. Abazov et al., Search for Higgs bosons decaying to τ pairs in p p¯ collisions with the D0 detector. Phys. Rev. Lett. 101, 071804 (2008). arXiv:0805.2491 [hep-ex]
    • 28. ATLAS Collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at √s = 8 TeV with the ATLAS detector. JHEP 11, 056 (2014). arXiv:1409.6064 [hep-ex]
    • 29. ATLAS Collaboration, Search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at √s = 7 TeV with the ATLAS detector. JHEP 02, 095 (2013). arXiv:1211.6956 [hep-ex]
    • 30. CMS Collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions. JHEP 10, 160 (2014). arXiv:1408.3316 [hep-ex]
    • 31. C.M.S. Collaboration, Search for neutral MSSM Higgs Bosons decaying into a pair of bottom quarks. JHEP 11, 071 (2015). arXiv:1506.08329 [hep-ex]
    • 32. LHCb Collaboration, R. Aaij et al., Limits on neutral Higgs boson production in the forward region in pp collisions at √s = 7T eV . JHEP 05, 132 (2013). arXiv:1304.2591 [hep-ex]
    • 33. J.L. Hewett, T.G. Rizzo, Low-energy phenomenology of superstring-inspired E6 models. Phys. Rept. 183, 193-381 (1989)
    • 34. M. Cvetic, Godfrey S., Discovery and identification of extra gauge bosons (1995). arXiv:hep-ph/9504216
    • 35. A. Leike, The Phenomenology of extra neutral gauge bosons. Phys. Rept. 317, 143-250 (1999). arXiv:hep-ph/9805494
    • 36. T.G. Rizzo, 'Z ' phenomenology and the LHC'. arXiv:hep-ph/0610104 [hep-ph]
    • 37. R. Diener, S. Godfrey, T.A. Martin, Unravelling an extra neutral Gauge Boson at the LHC using third generation fermions. Phys. Rev. D 83, 115008 (2011). arXiv:1006.2845 [hep-ph]
    • 38. P. Langacker, The Physics of Heavy Z' Gauge Bosons. Rev. Mod. Phys. 81, 1199-1228 (2009). arXiv:0801.1345 [hep-ph]
    • 39. G. Altarelli, B. Mele, M. Ruiz-Altaba, Searching for New Heavy Vector Bosons in p p¯ Colliders. Z. Phys. C 45, 109 (1989). [Erratum: Z. Phys.C47,676(1990)]
    • 40. K.R. Lynch et al., Finding Z bosons coupled preferentially to the third family at LEP and the Tevatron. Phys. Rev. D 63, 035006 (2001). arXiv:hep-ph/0007286
    • 41. E. Malkawi, T. Tait, C.-P. Yuan, A model of strong flavor dynamics for the top quark. Phys. Lett. B 385, 304-310 (1996). arXiv:hep-ph/9603349
    • 42. K. Hsieh et al., Global analysis of general SU (2) × SU (2) × U (1) models with precision data. Phys. Rev. D 82, 035011 (2010). arXiv:1003.3482 [hep-ph]
    • 43. D. J. Muller, S. Nandi, Top flavor: a separate SU(2) for the third family. Phys. Lett. B 383, 345-350 (1996). arXiv:hep-ph/9602390
    • 44. ATLAS Collaboration, A search for high-mass resonances decaying to τ +τ − in pp collisions at √s = 7T eV with the ATLAS detector. Phys. Lett. B 719, 242-260 (2013). arXiv:1210.6604 [hep-ex]
    • 45. CMS Collaboration, Search for high-mass resonances decaying into tau-lepton pairs in pp collisions at √s = 7T eV , Phys. Lett. B 716, 82-102 (2012). arXiv:1206.1725 [hep-ex]
    • 46. ATLAS Collaboration, A search for high-mass resonances decaying to τ +τ − in pp collisions at √s = 8T eV with the ATLAS detector. JHEP 07, 157 (2015). arXiv:1502.07177 [hep-ex]
    • 47. R.S. Chivukula, E.H. Simmons, Electroweak limits on nonuniversal Z bosons. Phys. Rev. D 66, 015006 (2002). arXiv:hep-ph/0205064
    • 48. ATLAS Collaboration, The ATLAS experiment at the CERN Large Hadron Collider. JINST 3, S08003 (2008)
    • 49. ATLAS Collaboration, ATLAS Insertable B-Layer Technical Design Report. ATLAS-TDR-19 (2010) http://cds.cern.ch/ record/1291633
    • 50. ATLAS Collaboration, ATLAS Insertable B-Layer Technical Design Report Addendum. ATLAS-TDR-19-ADD-1 (2012) http://cds.cern.ch/record/1451888
    • 51. ATLAS Collaboration, Improved luminosity determination in pp collisions at √s = 7T eV using the ATLAS detector at the LHC. Eur. Phys. J. C 73, 2518 (2013). arXiv:1302.4393 [hep-ex]
    • 52. P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 11, 040 (2004). arXiv:hep-ph/0409146
    • 53. S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method. JHEP 11, 070 (2007). arXiv:0709.2092 [hep-ph]
    • 54. S. Alioli et al., A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP 06, 043 (2010). arXiv:1002.2581 [hep-ph]
    • 55. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07, 079 (2014). arXiv:1405.0301 [hep-ph]
    • 56. M. Wiesemann et al., Higgs production in association with bottom quarks. JHEP 02, 132 (2015). arXiv:1409.5301 [hep-ph]
    • 57. H.-L. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010). arXiv:1007.2241 [hep-ph]
    • 58. S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics. Phys. Rev. D 93, 033006 (2016). arXiv:1506.07443 [hep-ph]
    • 59. T. Sjöstrand et al., An Introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159 (2015). arXiv:1410.3012 [hep-ph]
    • 60. ATLAS Collaboration, Measurement of the Z /γ boson transverse momentum distribution in pp collisions at √s = 7T eV with the ATLAS detector. JHEP 09, 55 (2014). arXiv:1406.3660 [hep-ex]
    • 61. booklet ATLAS Collaboration, ATLAS Run 1 Pythia8 tunes. ATL-PHYS-PUB-2014-021 (2014) http://cdsweb.cern.ch/ record/1966419
    • 62. R.V. Harlander, S. Liebler, H. Mantler, SusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM. Comp. Phys. Commun. 184, 1605 (2013). arXiv:1212.3249 [hep-ph]
    • 63. R.V. Harlander, W.B. Kilgore, Next-to-next-to-leading order Higgs production at Hadron colliders. Phys. Rev. Lett. 88, 201801 (2002). arXiv:hep-ph/0201206
    • 64. M. Spira et al., Higgs boson production at the LHC. Nucl. Phys. B 453, 17 (1995). arXiv:hep-ph/9504378
    • 65. C. Anastasiou, K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD. Nucl. Phys. B 646, 220 (2002). arXiv:hep-ph/0207004
    • 66. V. Ravindran, J. Smith, W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions. Nucl. Phys. B 665, 325 (2003). arXiv:hep-ph/0302135
    • 67. R.V. Harlander, W.B. Kilgore, Production of a pseudoscalar Higgs boson at hadron colliders at next-to-next-to leading order. JHEP 10, 017 (2002). arXiv:hep-ph/0208096
    • 68. C. Anastasiou, K. Melnikov, Pseudoscalar Higgs boson production at hadron colliders in NNLO QCD. Phys. Rev. D 67, 037501 (2003). arXiv:hep-ph/0208115
    • 69. U. Aglietti et al., Two loop light fermion contribution to Higgs production and decays. Phys. Lett. B 595, 432 (2004). arXiv:hep-ph/0404071
    • 70. R. Bonciani, G. Degrassi, A. Vicini, On the generalized harmonic polylogarithms of one complex variable. Comput. Phys. Commun. 182, 1253 (2011). arXiv:1007.1891 [hep-ph]
    • 71. R.V. Harlander, M. Steinhauser, Supersymmetric Higgs production in gluon fusion at next-to-leading order. JHEP 09, 066 (2004). arXiv:hep-ph/0409010
    • 72. R. Harlander, P. Kant, Higgs production and decay: analytic results at next-to-leading order QCD. JHEP 12, 015 (2005). arXiv:hep-ph/0509189
    • 73. G. Degrassi, P. Slavich, NLO QCD bottom corrections to Higgs boson production in the MSSM. JHEP 11, 044 (2010). arXiv:1007.3465 [hep-ph]
    • 74. G. Degrassi, S. Di Vita, P. Slavich, NLO QCD corrections to pseudoscalar Higgs production in the MSSM. JHEP 08, 128 (2011). arXiv:1107.0914 [hep-ph]
    • 75. G. Degrassi, S. Di Vita, P. Slavich, On the NLO QCD corrections to the production of the heaviest neutral Higgs scalar in the MSSM. Eur. Phys. J. C 72, 2032 (2012). arXiv:1204.1016 [hep-ph]
    • 76. R. Harlander, W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to-leading order. Phys. Rev. D 68, 013001 (2003). arXiv:hep-ph/0304035
    • 77. S. Dittmaier, M. Krämer, M. Spira, Higgs radiation off bottom quarks at the tevatron and the LHC. Phys. Rev. D 70, 074010 (2004). arXiv:hep-ph/0309204
    • 78. S. Dawson, C.B. Jackson, L. Reina, D. Wackeroth, Exclusive Higgs boson production with bottom quarks at hadron colliders. Phys. Rev. D 69, 074027 (2004). arXiv:hep-ph/0311067
    • 79. R. Harlander, M. Krämer, M. Schumacher, Bottom-quark associated Higgs-boson production: reconciling the four- and fiveflavour scheme approach (2011). arXiv:1112.3478 [hep-ph]
    • 80. S. Heinemeyer, W. Hollik, G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM. Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320
    • 81. S. Heinemeyer, W. Hollik, G. Weiglein, The masses of the neutral CP - even Higgs bosons in the MSSM: accurate analysis at the two loop level. Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472
    • 82. M. Frank et al., The Higgs Boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach. JHEP 02, 047 (2007). arXiv:hep-ph/0611326
    • 83. G. Degrassi et al., Towards high precision predictions for the MSSM Higgs sector. Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020
    • 84. T. Hahn et al., High-precision predictions for the light CP - even Higgs Boson mass of the minimal supersymmetric Standard model. Phys. Rev. Lett. 112, 141801 (2014). arXiv:1312.4937 [hep-ph]
    • 85. LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 3. Higgs Properties. CERN-2013-004 (CERN, Geneva, 2013). arXiv:1307.1347 [hep-ph]
    • 86. A. Djouadi, J. Kalinowski, M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension. Comput. Phys. Commun. 108, 56 (1998). arXiv:hep-ph/9704448
    • 87. Z. Czyczula, T. Przedzinski, Z. Was, TauSpinner program for studies on spin effect in tau production at the LHC. Eur. Phys. J. C 72, 1988 (2012). arXiv:1201.0117 [hep-ph]
    • 88. A. Kaczmarska et al., Application of TauSpinner for studies on τ -Lepton polarization and spin correlations in Z, W and H decays at the LHC. Acta Phys. Polon. B 45, 1921 (2014). arXiv:1402.2068 [hep-ph]
    • 89. S. Banerjee et al., Ascertaining the spin for new resonances decaying into τ +τ − at Hadron Colliders. Eur. Phys. J. C 73, 2313 (2013). arXiv:1212.2873 [hep-ph]
    • 90. T. Sjöstrand, S. Mrenna, P. Skands, A Brief Introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852 (2008). arXiv:0710.3820 [hep-ph]
    • 91. R. D. Ball et al., Parton distributions with LHC data. Nucl. Phys. B 867, 244-289 (2013). arXiv:1207.1303 [hep-ph]
    • 92. E. Barberio, B.V. Eijk, Z. Was, PHOTOS - a universal Monte Carlo for QED radiative corrections in decays. Comput. Phys. Commun. 66, 115 (1991)
    • 93. N. Davidson, T. Przedzinski, Z. Was, PHOTOS Interface in C++: Technical and Physics Documentation. Comput. Phys. Commun. 199, 86-101 (2016). arXiv:1011.0937 [hep-ph]
    • 94. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02, 007 (2009). arXiv:0811.4622 [hep-ph]
    • 95. S. Höche et al., QCD matrix elements + parton showers: the NLO case, JHEP 04, 027 (2013). arXiv:1207.5030 [hep-ph]
    • 96. C. Anastasiou et al., High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO. Phys. Rev. D 69, 094008 (2004). arXiv:hep-ph/0312266
    • 97. K. Melnikov, F. Petriello, Electroweak gauge boson production at hadron colliders through O(alpha(s)**2). Phys. Rev. D 74, 114017 (2006). arXiv:hep-ph/0609070
    • 98. R. Gavin et al., FEWZ 2.0: a code for hadronic Z production at next-to-next-to-leading order. Comput. Phys. Commun. 182, 2388 (2011). arXiv:1011.3540 [hep-ph]
    • 99. P. Artoisenet et al., Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations. JHEP 03, 015 (2013). arXiv:1212.3460 [hep-ph]
    • 100. T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). arXiv:hep-ph/0603175
    • 101. P. Skands, Tuning Monte Carlo generators: the perugia tunes. Phys. Rev. D 82, 074018 (2010). arXiv:1005.3457 [hep-ph]
    • 102. M. Czakon, A. Mitov, Top++: a program for the calculation of the top-pair cross-section at Hadron colliders. Comput. Phys. Commun. 185, 2930 (2014). arXiv:1112.5675 [hep-ph]
    • 103. N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production. Phys. Rev. D 83, 091503 (2011). arXiv:1103.2792 [hep-ph]
    • 104. N. Kidonakis, NNLL resummation for s-channel single top quark production. Phys. Rev. D 81, 054028 (2010). arXiv:1001.5034 [hep-ph]
    • 105. N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated production with a W- or H-. Phys. Rev. D 82, 054018 (2010). arXiv:1005.4451 [hep-ph]
    • 106. D.J. Lange, The EvtGen particle decay simulation package. Nucl. Instrum. Meth. A 462, 152 (2001)
    • 107. ATLAS Collaboration, Summary of ATLAS Pythia 8 tunes. ATL-PHYS-PUB-2012-003 (2012). http://cdsweb.cern.ch/ record/1474107
    • 108. A.D. Martin et al., Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002 [hep-ph]
    • 109. S. Agostinelli et al., GEANT4 Collaboration, GEANT4 - a simulation toolkit. Nucl. Instrum. Meth. A 506, 250 (2003)
    • 110. ATLAS Collaboration, The ATLAS simulation infrastructure. Eur. Phys. J. C 70, 823 (2010). arXiv:1005.4568 [physics.ins-det]
    • 111. ATLAS Collaboration, The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim. ATLPHYS-PUB-2010-013 (2010). http://cdsweb.cern.ch/record/ 1300517
    • 112. ATLAS Collaboration, Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data. Eur. Phys. J. C 74, 3071 (2014). arXiv:1407.5063 [hep-ex]
    • 113. ATLAS Collaboration, Electron effciency measurements with the ATLAS detector using the 2015 LHC proton-proton collision data. ATLAS-CONF-2016-024 (2016). http://cdsweb.cern.ch/record/ 2157687
    • 114. ATLAS Collaboration, Muon reconstruction performance of the ATLAS detector in proton-proton collision data at √s = 13T eV . Eur. Phys. J. C 76, 292 (2016). arXiv:1603.05598[hep-ex]
    • 115. M. Cacciari, G.P. Salam, Pileup subtraction using jet areas. Phys. Lett. B 659, 119 (2008). arXiv:0707.1378 [hep-ph]
    • 116. ATLAS Collaboration, Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1 (2016). arXiv:1603.02934 [hep-ex]
    • 117. M. Cacciari, G.P. Salam, G. Soyez, The anti-kt jet clustering algorithm. JHEP 04, 063 (2008). arXiv:0802.1189 [hep-ph]
    • 118. ATLAS collaboration, Tagging and suppression of pileup jets with the ATLAS detector. ATLAS-CONF-2014-018 (2014). http:// cdsweb.cern.ch/record/1700870
    • 119. ATLAS Collaboration, Expected performance of the ATLAS btagging algorithms in Run-2. ATL-PHYS-PUB-2015-022 (2015) http://cdsweb.cern.ch/record/2037697
    • 120. ATLAS Collaboration, Commissioning of the ATLAS b-tagging algorithms using t t¯ events in early Run-2 data. ATL-PHYS-PUB2015-039 (2015). http://cdsweb.cern.ch/record/2047871
    • 121. ATLAS Collaboration, Reconstruction, energy calibration, and identification of hadronically decaying Tau leptons in the ATLAS experiment for Run-2 of the LHC. ATL-PHYS-PUB-2015-045 (2015). http://cdsweb.cern.ch/record/2064383
    • 122. ATLAS Collaboration, Performance of missing transverse momentum reconstruction for the ATLAS detector in the first proton-proton collisions at √s = 13T eV . ATL-PHYS-PUB2015-027 (2015) http://cdsweb.cern.ch/record/2037904
    • 123. M. Aliev et al., HatHor: HAdronic top and heavy quarks crOss section calculatoR. Comput. Phys. Commun. 182, 1034 (2011). arXiv:1007.1327 [hep-ph]
    • 124. P. Kant et al., HatHor for single top-quark production: updated predictions and uncertainty estimates for single top-quark production in hadronic collisions. Comput. Phys. Commun. 191, 74 (2015). arXiv:1406.4403 [hep-ph]
    • 125. ATLAS Collaboration, Simulation of top-quark production for the ATLAS experiment at √s = 13T eV . ATL-PHYS-PUB-2016- 004 (2016). http://cdsweb.cern.ch/record/2120417
    • 126. M. Bahr et al., Herwig++ Physics and Manual. Eur. Phys. J. C 58, 639-707 (2008). arXiv:0803.0883 [hep-ph]
    • 127. R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). arXiv:1410.8849 [hep-ph]
    • 128. A.D. Martin et al., Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions. Eur. Phys. J. C 70, 51 (2010). arXiv:1007.2624 [hep-ph]
    • 129. G. Cowan et al., Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011). arXiv:1007.1727 [physics.data-an] [Erratum: Eur. Phys. J. C 73 (2013) 2501]
    • 130. A.L. Read, Presentation of search results: the CLs technique. J. Phys. G 28, 2693 (2002)
    • 131. ATLAS Collaboration, Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector. JHEP 11, 206 (2015). arXiv:1509.00672 [hep-ex]
    • 132. Q.-H. Cao et al., Discovery and identification of W' and Z' in SU (2)1 ⊗ SU (2)2 ⊗ U (1)X models at the LHC. Phys. Rev. D 86, 095010 (2012). arXiv:1205.3769 [hep-ph]
    • 133. K.Y. Lee, Lepton flavor violation in a nonuniversal gauge interaction model. Phys. Rev. D 82, 097701 (2010). arXiv:1009.0104 [hep-ph]
    • 134. K.Y. Lee, Unitarity violation of the CKM matrix in a nonuniversal gauge interaction model. Phys. Rev. D 71, 115008 (2005). arXiv:hep-ph/0410381
    • 135. ATLAS Collaboration, ATLAS Computing Acknowledgements 2016-2017. ATL-GEN-PUB-2016-002 (2016). http://cdsweb. cern.ch/record/2202407
    • 26 (a)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (b)Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil; (c)Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil; (d)Instituto de Fisica, Universidade de Sao Paulo, São Paulo, Brazil
    • 27 Physics Department, Brookhaven National Laboratory, Upton, NY, USA
    • 28 (a)Transilvania University of Brasov, Brasov, Romania; (b)National Institute of Physics and Nuclear Engineering, Bucharest, Romania; (c)Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; (d)University Politehnica Bucharest, Bucharest, Romania; (e)West University in Timisoara, Timisoara, Romania
    • 29 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
    • 30 Cavendish Laboratory, University of Cambridge, Cambridge, UK
    • 31 Department of Physics, Carleton University, Ottawa, ON, Canada
    • 32 CERN, Geneva, Switzerland
    • 33 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
    • 34 (a)Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b)Departamento de Física, Universidad Técnica Federico Santa María, Valparaiso, Chile
    • 35 (a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b)Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China; (c)Department of Physics, Nanjing University, Nanjing, Jiangsu, China; (d)School of Physics, Shandong University, Jinan, Shandong, China; (e)Shanghai Key Laboratory for Particle Physics and Cosmology, Department of Physics and Astronomy, Shanghai Jiao Tong University (also affiliated with PKU-CHEP), Shanghai, China; (f)Physics Department, Tsinghua University, Beijing 100084, China
    • 36 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
    • 37 Nevis Laboratory, Columbia University, Irvington, NY, USA
    • 38 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
    • 39 (a)INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy; (b)Dipartimento di Fisica, Università della Calabria, Rende, Italy
    • 40 (a)Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland ; (b)Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
    • 41 Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
    • 42 Physics Department, Southern Methodist University, Dallas, TX, USA
    • 43 Physics Department, University of Texas at Dallas, Richardson, TX, USA
    • 44 DESY, Hamburg and Zeuthen, Germany
    • 45 Lehrstuh für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
    • 46 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
    • 47 Department of Physics, Duke University, Durham, NC, USA
    • 48 SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
    • 49 INFN Laboratori Nazionali di Frascati, Frascati, Italy
    • 50 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
    • 51 Section de Physique, Université de Genève, Geneva, Switzerland
    • 52 (a)INFN Sezione di Genova, Genoa, Italy; (b)Dipartimento di Fisica, Università di Genova, Genoa, Italy
    • 53 (a)E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b)High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
    • 54 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
    • 55 SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK
    • 56 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
    • 57 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
    • 58 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA
    • 59 (a)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (b)Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (c)ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
    • 60 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
    • 110 Department of Physics, New York University, New York, NY, USA
    • 111 Ohio State University, Columbus, OH, USA
    • 112 Faculty of Science, Okayama University, Okayama, Japan
    • 113 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
    • 114 Department of Physics, Oklahoma State University, Stillwater, OK, USA
    • 115 Palacký University, RCPTM, Olomouc, Czech Republic
    • 116 Center for High Energy Physics, University of Oregon, Eugene, OR, USA
    • 117 LAL, University of Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
    • 118 Graduate School of Science, Osaka University, Osaka, Japan
    • 119 Department of Physics, University of Oslo, Oslo, Norway
    • 120 Department of Physics, Oxford University, Oxford, UK
    • 121 (a)INFN Sezione di Pavia, Pavia, Italy; (b)Dipartimento di Fisica, Università di Pavia, Pavia, Italy
    • 122 Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
    • 123 National Research Centre “Kurchatov Institute” B.P. Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
    • 124 (a)INFN Sezione di Pisa, Pisa, Italy; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
    • 125 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
    • 126 (a)Laboratório de Instrumentação e Física Experimental de Partículas-LIP, Lisbon, Portugal; (b)Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; (c)Department of Physics, University of Coimbra, Coimbra, Portugal; (d)Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; (e)Departamento de Fisica, Universidade do Minho, Braga, Portugal; (f)Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain ; (g)Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
    • 127 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
    • 128 Czech Technical University in Prague, Prague, Czech Republic
    • 129 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
    • 130 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Protvino, Russia
    • 131 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
    • 132 (a)INFN Sezione di Roma, Rome, Italy; (b)Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
    • 133 (a)INFN Sezione di Roma Tor Vergata, Rome, Italy; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy
    • 134 (a)INFN Sezione di Roma Tre, Rome, Italy; (b)Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy
    • 135 (a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco; (b)Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat, Morocco; (c)Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Marrakech, Morocco; (d)Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco; (e)Faculté des Sciences, Université Mohammed V, Rabat, Morocco
    • 136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat à l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
    • 137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA
    • 138 Department of Physics, University of Washington, Seattle, WA, USA
    • 139 Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
    • 140 Department of Physics, Shinshu University, Nagano, Japan
    • 141 Fachbereich Physik, Universität Siegen, Siegen, Germany
    • 142 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
    • 143 SLAC National Accelerator Laboratory, Stanford, CA, USA
    • 144 (a)Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; (b)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
    • 145 (a)Department of Physics, University of Cape Town, Cape Town, South Africa; (b)Department of Physics, University of Johannesburg, Johannesburg, South Africa; (c)School of Physics, University of the Witwatersrand, Johannesburg, South Africa
    • 146 (a)Department of Physics, Stockholm University, Stockholm, Sweden; (b)The Oskar Klein Centre, Stockholm, Sweden
    • 147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
    • 148 Departments of Physics and Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, USA
  • No similar publications.

Share - Bookmark

Funded by projects


Related to

  • egiEGI virtual organizations: atlas

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok