Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cole, Laura; Djidja, M-C; Bluff, J.; Claude, E; Carolan, Vikki; Paley, M; Tozer, G M; Clench, Malcolm (2011)
Publisher: Academic Press
Languages: English
Types: Article
Characterising the protein signatures in tumours following vascular-targeted therapy will help determine both treatment response and resistance mechanisms. Here, mass spectrometry imaging and MS/MS with and without ion mobility separation have been used for this purpose in a mouse fibrosarcoma model following treatment with the tubulin-binding tumour vascular disrupting agent, combretastatin A-4-phosphate (CA-4-P). Characterisation of peptides after in-situ tissue tryptic digestion was carried out using Matrix Assisted Laser Desorption Ionisation- Mass Spectrometry (MALDI-MS) and Matrix Assisted Laser Desorption Ionisation- Ion Mobility Separation- Mass Spectrometry Imaging (MALDI-IMS-MSI) to observe spatial distribution of peptides. Matrix Assisted Laser Desorption Ionisation- Ion Mobility Separation- Tandem Mass Spectrometry (MALDI-IMS-MS/MS) of peaks was performed to elucidate any pharmacological responses and potential biomarkers. By taking tumour samples at a number of time points after treatment gross changes in the tissue were indicated by the changes in the signal levels of certain peptides. These were identified as arising from haemoglobin and indicated the disruption of the tumour vasculature. It was hoped that the use of PCA-DA would reveal more subtle changes taking place in the tumour samples however these are masked by the dominance of the changes in the haemoglobin signals.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1) Hanahan D and Weinberg RA (2000) The hallmarks of cancer. Cell. 100. 57- 70
    • 2) Lord CJ and Ashworth A (2010) Biology-driven cancer drug development: back to the future. BMC Biology. 8. (38) 1-12
    • 3) Kanthou and Tozer (2007) Selective destruction of the tumour vasculature by targeting the endothelial cytoskeleton. Drug discovery today: Therapeutic strategies. 4. (4) 237-243
    • 4) Thorpe PE, Chaplin DJ, Blakey DC (2003) The first international conference on vascular targeting: Meeting overview. Cancer Research. 63. 1144-1147
    • 5) Zhi-chao SI, Jie L (2008) What 'helps' tumours evade vascular targeting treatment? Chinese Medical Journal. 121. (9) 844-849
    • 6) Tozer GM, Kanthou C, Lewis G, Prise VE, Vojnovic B, Hill A (2008) Tumour vascular disrupting agents: combating treatment resistance. The British Journal of Radiology. 81. S12-S20
    • 7) Abdollahi A, Folkman J (2010) Evading tumour evasion: Current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resistance Updates. 13. 16-28
    • 8) Kanthou C and Tozer GM (2009) Microtubule depolymerizing vascular disrupting agents: novel therapeutic agents for oncology and other pathologies International Journal of Experimental Pathology 80. 284-294.
    • 9) Siemann W. (2009) "Vascular targeted therapies in oncology" Cell and Tissue Research 335. 241-248.
    • 10) Caprioli, R. M., Farmer T.B. and Gile J. (1997) Molecular Imaging of Biological Samples: Localization of Peptides and Proteins Using MALDI-TOF MS Anal. Chem. 69, 4751-4760.
    • 11) Chaurand, P.; Cornett, D. S.; Caprioli, R. M. (2006) Molecular imaging of thin mammalian tissue sections by mass spectrometry Curr. Opin. Biotechnol. 17, 431- 436.
    • 12) Chaurand, P.; Fouch├ęcourt, S.; DaGue, B. B.; Xu, B. J.; Reyzer, M. L.; Orgebin-Crist, M.; Caprioli, R. M. (2003) Profiling and imaging proteins in the mouse epididymis by imaging mass spectrometry Proteomics, 3, 2221-2239.
    • 13) Stoeckli, M.; Staab, D.; Schweitzer, A.; Gardiner, J.; Seebach, D. (2007) Imaging of a beta-peptide distribution in whole-body mice sections by MALDI mass spectrometry J. Am. Soc. Mass Spectrom. 18, 1921-1924.
    • 14) Burrell, M.; Earnshaw, C.; Clench, M. (2007) Imaging Matrix Assisted Laser Desorption Ionization Mass Spectrometry: a technique to map plant metabolites within tissues at high spatial resolution J. Exp. Bot. 58, 757-763.
    • 15) Djidja, M.; Carolan, V.; Loadman, P. M.; Clench, M. R. (2008) Method development for protein profiling in biological tissues by matrix-assisted laser desorption/ionisation mass spectrometry imaging Rapid Commun. Mass Spectrom. 22, 1615-1618.
    • 16) Trim, P. J.; Atkinson, S. J.; Princivalle, A. P.; Marshall, P. S.; West, A.; Clench, M. R. (2008) Matrix-assisted laser desorption/ionisation mass spectrometry imaging of lipids in rat brain tissue with integrated unsupervised and supervised multivariant statistical analysis Rapid Commun. Mass. Spectrom. 22, 1503-1509.
    • 17) Fournier, I.; Wisztorski, M.; Salzet, M. (2008) Tissue imaging using MALDI-MS: a new frontier of histopathology proteomics Expert Rev Proteomics 5, 413-424.
    • 18) Schwartz, S. A.; Weil, R. J.; Johnson, M. D.; Toms, S. A.; Caprioli, R. M. Protein profiling in brain tumors using mass spectrometry: feasibility of a new technique for the analysis of protein expression Clin. Cancer Res. 2004, 10, 981-987.
    • 19) Chaurand, P.; DaGue, B. B.; Pearsall, R. S.; Threadgill, D. W.; Caprioli, R. M. Profiling proteins from azoxymethane-induced colon tumors at the molecular level by matrix-assisted laser desorption/ionization mass spectrometry Proteomics 2001, 1, 1320-1326.
    • 20) Lemaire, R.; Menguellet, S. A.; Stauber, J.; Marchaudon, V.; Lucot, J.; Collinet, P.; Farine, M.; Vinatier, D.; Day, R.; Ducoroy, P.; Salzet, M.; Fournier, I. Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11S proteasome activator complex, Reg alpha fragment, is a new potential ovary cancer biomarker J. Proteome. Res. 2007, 6, 4127-4134. 21) Schwamborn, K.; Krieg, R. C.; Reska, M.; Jakse, G.; Knuechel, R.; Wellmann, A. Identifying prostate carcinoma by MALDI-Imaging Int. J. Mol. Med. 2007, 20, 155-159.
    • 22)Lemaire, R.; Desmons, A.; Tabet, J. C.; Day, R.; Salzet, M.; Fournier, I. Direct analysis and MALDI imaging of formalin-fixed, paraffin-embedded tissue sections J. Proteome Res. 2007, 6, 1295-1305. 23)Shimma, S.; Furuta, M.; Ichimura, K.; Yoshida, Y.; Setou, M. A Novel Approach to in situ Proteome Analysis Using Chemical Inkjet Printing Technology and MALDI-QIT-TOF Tandem Mass Spectrometer J. Mass Spectrom. Soc. Jpn. 2006, 54, 133-140.
    • Page | 18
    • 24)Groseclose, M. R.; Andersson, M.; Hardesty, W. M.; Caprioli, R. M. Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry J. Mass Spectrom. 2007, 42, 254-262.
    • 25)Djidja M-C, Claude E, Snel MF, Scriven P, Francese S, Carolan V, Clench MR (2009) Maldi-ion mobility separation-mass spectrometry imaging of glucose-regulated protein 78 kDa (Grp78) in human formalin fixed paraffinembedded pancreatic adenocarcinoma tissue sections. Journal of Proteome Research. 8. (10) 4876-4884
    • 26)McDonnell LA, Corthals GL, Willems SM, Remoortere van A, Zeijl van RJM, Deelder AM (2010) Peptide and protein imaging mass spectrometry in cancer research. Journal of Proteomics. 73. 1921-1944
    • 27) Wang L-CS, Thomsen L, Sutherland R, Reddy CB, Tijono SM, Chen C-JJ, Angel CE, Dunbar PR and Ching LM (2009) Neutrophil Influx and Chemokine Production during the early phases of the anti-tumour response to the vasculature disrupting agent DMXAA (ASA404). Neoplasia 11. 793-803.
    • 28)Tozer GM, Akerman S, Cross N.A. et al (2008) "Blood Vessel Maturation and Response to Vascular-Disrupting Therapy in Single Vascular Endothelial Growth Factor-A Isoform-Producing Tumors" Cancer Research 68, 2301- 2311.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article