LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bibi, Sagida
Languages: English
Types: Doctoral thesis
Subjects:
Whether to assess the functionality of equipment or as a determinate for the accuracy of assays, reference standards are essential for the purposes of standardisation and validation. The ELISPOT assay, developed over thirty years ago, has emerged as a leading immunological assay in the development of novel vaccines for the assessment of efficacy. However, with its widespread use, there is a growing demand for a greater level of standardisation across different laboratories. One of the major difficulties in achieving this goal has been the lack of definitive reference standards. This is partly due to the ex vivo nature of the assay, which relies on cells being placed directly into the wells. Thus, the aim of this thesis was to produce an artificial reference standard using liposomes, for use within the assay. Liposomes are spherical bilayer vesicles with an enclosed aqueous compartment and therefore are models for biological membranes. Initial work examined pre-design considerations in order to produce an optimal formulation that would closely mimic the action of the cells ordinarily placed on the assay. Recognition of the structural differences between liposomes and cells led to the formulation of liposomes with increased density. This was achieved by using a synthesised cholesterol analogue. By incorporating this cholesterol analogue in liposomes, increased sedimentation rates were observed within the first few hours. The optimal liposome formulation from these studies was composed of 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), cholesterol (Chol) and brominated cholesterol (Brchol) at a 16:4:12 µMol ratio, based on a significantly higher (p<0.01) sedimentation (as determined by a percentage transmission of 59 ± 5.9 % compared to the control formulation at 29 ± 12 % after four hours). By considering a range of liposome formulations ‘proof of principle’ for using liposomes as ELISPOT reference standards was shown; recombinant IFN? cytokine was successfully entrapped within vesicles of different lipid compositions, which were able to promote spot formation within the ELISPOT assay. Using optimised liposome formulations composed of phosphatidylcholine with or without cholesterol (16 µMol total lipid) further development was undertaken to produce an optimised, scalable protocol for the production of liposomes as reference standards. A linear increase in spot number by the manipulation of cytokine concentration and/or lipid concentrations was not possible, potentially due to the saturation that occurred within the base of wells. Investigations into storage of the formulations demonstrated the feasibility of freezing and lyophilisation with disaccharide cryoprotectants, but also highlighted the need for further protocol optimisation to achieve a robust reference standard upon storage. Finally, the transfer of small-scale production to a medium lab-scale batch (40 mL) demonstrated this was feasible within the laboratory using the optimised protocol.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bibi, S, Lattmann, E, Mohammed, A. R. & Perrie, Y. 2012. Trigger release liposome systems: local and remote controlled delivery? J Microencapsul, 29, 262-76.
    • Bibi, S, Kaur, R, Henriksen-Lacey, M, Mcneil, S. E, Wilkhu, J, Lattmann, E, Christensen, D, Mohammed, A. R. & Perrie, Y. 2011. Microscopy imaging of liposomes: from coverslips to environmental SEM. Int J Pharm, 417, 138-50.
    • Feasibility of scaling up and lyophilisation of reference standards..................................... 256 6.1 Introduction............................................................................................................... 257 6.1.1 Enhancing stability of liposome reference standards and consideration of production scale-up...................................................................................................... 257 6.2 Aims and Objectives ................................................................................................. 258 6.3 Results and Discussion.............................................................................................. 259 6.3.1 Assessing storage options for liposome reference standards ............................... 259 6.3.2 Lyophilisation of liposome formulations encapsulating protein.......................... 260 6.3.2.1 Optimisation of lyoprotectant concentration for the liposome reference standards.................................................................................................. 264 Allegraza, A, Ireland, T, Kools, W, Phillips, M, Raghunath, B, Wilkins, R, & Xenopoulos, A.
    • 2008. Membranes in the biopharmaceutical Industry; Ed Peinnemann, KV, Pereira-nunes.
    • Membranes for life sciences. Wiley-VCH, Germany, 91-154.
    • Allen, T. . & M. Marjan, J. M. J. 1996. Long circulating liposomes: Past, present and future.
    • Biotech Adv, 14, 151-175.
    • Allen, T. M, Hansen, C. B. & De Menezes, D. E. L. 1995. Pharmacokinetics of long circulating liposomes. Adv Drug Deliv Rev, 16, 267-284.
    • Allen, T. M. & Cullis, P. R. 2012. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev.
    • Allison, A. G. & Gregoriadis, G. 1974. Liposomes as immunological adjuvants. Nature, 252, 252.
    • M, Lucas, A, Rushton, B, Chopra, A, Mallal, S. & John, M. 2009. Automation of the ELISpot assay for high-throughput detection of antigen-specific T-cell responses. J Immunol Methods, 344, 1-5.
    • Anchordoguy, T. J, Rudolph, A. S, Carpenter, J. F. & Crowe, J. H. 1987. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology, 24, 324-331.
    • Anderson, M. & Omri, A. 2004. The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations. Drug Deliv, 11, 33-9.
    • Anderson, P. M, Hanson, D. C, Hasz, D. E, Halet, M. R, Blazar, B. R. & Ochoa, A. C. 1994.
    • Cytokines in liposomes: preliminary studies with IL-1, IL-2, IL-6, GM-CSF and interferon-gamma.
    • Cytokine, 6, 92-101.
    • Anderson, P, Vilcek, J. & Weissmann, G. 1981. Entrapment of human leukocyte interferon in the aqueous interstices of liposomes. Infect Immun, 31, 1099-103.
    • Armbruster, D. A. & Pry, T. 2008. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev, 29 Suppl 1, S49-52.
    • Arni, R. K. & Ward, R. J. 1996. Phospholipase A2--a structural review. Toxicon, 34, 827-41.
    • Asai, T, Storkus, Wj, & Whiteside, Tl. Evaluation of the modified ELISPOT assay for gamma interferon production in cancer patients receiving antitumor vaccines. 2000. Clin diag lab Immun 145 -154.
    • Bakás, L. 2000. Influence of encapsulated enzyme on the surface properties of freeze-dried liposomes in trehalose. Colloid Surfaces B, 17, 103-109.
    • Bangham, A. D, Standish, M. M. & Watkins, J. C. 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids. J mol biol, 13, 238-52.
    • Johnson, S.M. & Bangham, A.D. (1969) The action of anaesthetics on phospholipid membranes.
    • Biochim. Biophys. Acta 193, 92-104.
    • Banker, G. S. & Rhodes, C. T. 2002. Modern pharmaceutics, New York, Marcel Dekker.
    • Barton, Dhr, & Miller, E. 1950. Stereochemistry of the cholesterol dibromides.J.Am.Chem.Soc, 1066-1070.
    • Basanez, G, Ruiz-Arguello, M. B, Alonso, A, Goni, F. M, Karlsson, G. & Edwards, K. 1997.
    • Morphological changes induced by phospholipase C and by sphingomyelinase on large unilamellar vesicles: a cryo-transmission electron microscopy study of liposome fusion. Biophys J, 72, 2630-7.
    • Belchetz, P. E, Crawley, J. C, Braidman, I. P. & Gregoriadis, G. 1977. Treatment of Gaucher's disease with liposome-entrapped glucocerebroside: beta-glucosidase. Lancet, 2, 116-7.
    • Bettelheim, F. A, Brown, W. H. & March, J. 2004. Introduction to general, organic and biochemistry, Belmont, CA, Thomson Brooks/Cole.
    • Bibi, S, Lattmann, E, Mohammed, A. R. & Perrie, Y. 2012. Trigger release liposome systems: local and remote controlled delivery? J Microencapsul, 29, 262-76.
    • Bibi, S, Kaur, R, Henriksen-Lacey, M, Mcneil, S. E, Wilkhu, J, Lattmann, E, Christensen, D, Mohammed, A. R. & Perrie, Y. 2011. Microscopy imaging of liposomes: from coverslips to environmental SEM. Int J Pharm, 417, 138-50.
    • C. K. 1983. Correction for light absorption in fluorescence studies of protein-ligand interactions.
    • Analyt Biochem, 132, 353-361.
    • & Engler, J. A. 1993. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med, 4, 197-250.
    • Blume, G. & Cevc, G. 1990. Liposomes for the sustained drug release in vivo. Biochimbiophys acta, 1029, 91-7.
    • Bouvrais, H, Pott, T, Bagatolli, L. A, Ipsen, J. H. & Meleard, P. 2010. Impact of membraneanchored fluorescent probes on the mechanical properties of lipid bilayers. Biochim Biophys Acta, 1798, 1333-7.
    • Budai, M. & Szogyi, M. 2001. [Liposomes as drug carrier systems. Preparation, classification and therapeutic advantages of liposomes]. Acta Pharm Hung, 71, 114-8.
    • Burke, C. W, Hsiang, Y. H, Alexander, E. T, Kilbanov, A. L. & Price, R. J. 2011. Covalently linking poly(lactic-co-glycolic acid) nanoparticles to microbubbles before intravenous injection improves their ultrasound-targeted delivery to skeletal muscle. Small, 7, 1227-35.
    • Calliada, F, Campani, R, Bottinelli, O, Bozzini, A. & Sommaruga, M. G. 1998. Ultrasound contrast agents: basic principles. Eur J Radiol, 27 Suppl 2, S157-60.
    • Caplen, N. J, Alton, E. W, Middleton, P. G, Dorin, J. R, Stevenson, B. J, Gao, X, Durham, S. R, Jeffery, P. K, Hodson, M. E. & Coutelle, C. 1995. Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nature med, 1, 39-46.
    • casals, e, galan, a. m, escolar, g, gallardo, m. & estelrich, j. 2003. Physical stability of liposomes bearing hemostatic activity. Chem Phys Lipids, 125, 139-46.
    • Chandaroy, P, Sen, A. & Hui, S. W. 2001. Temperature-controlled content release from liposomes encapsulating Pluronic F127. J Control Release, 76, 27-37.
    • Chambers, I. R, Cone, T. R, Oswald-Richter, K. & Drake, W. P. 2010. Enzyme-linked immunospot assay (ELISPOT): Quantification of Th-1 cellular immune responses against microbial antigens. J Vis Exp.
    • Chen, C, Han, D, Cai, C. & Tang, X. 2010. An overview of liposome lyophilization and its future potential. J Control Release, 142, 299-311.
    • Davidsen, J, Vermehren, C, Frokjaer, S, Mouritsen, O. G. & Jørgensen, K. 2001. Drug delivery by phospholipase A2 degradable liposomes. Int J Pharm, 214, 67-69.
    • De La Maza, A. & Parra, J. L. 1996. Changes in phosphatidylcholine liposomes caused by a mixture of Triton X-100 and sodium dodecyl sulfate. Biochim Biophys Acta, 1300, 125-34.
    • 2010. Detection of circulating microparticles by flow cytometry: influence of centrifugation, filtration of buffer and freezing. Vasc Risk Manag, 6, 1125-1133.
    • Döbeli, H, Gentz, R, Jucker, W, Garotta, G, Hartmann, D. W. & Hochuli, E. 1988. Role of the carboxy-terminal sequence on the biological activity of human immune interferon (IFN-γ). J Biotech, 7, 199-216.
    • Drummond, D. C, Zignani, M. & Leroux, J. 2000. Current status of pH-sensitive liposomes in drug delivery. Prog Lipid Res, 39, 409-60.
    • Edwards, K. A. & Baeumner, A. J. 2006. Liposomes in analyses. Talanta, 68, 1421-31.
    • K. & Mallik, S. 2008. Mechanistic studies of the triggered release of liposomal contents by matrix metalloproteinase-9. J Am Chem Soc, 130, 10633-42.
    • Ellerbroek, S. M, Hudson, L. G. & Stack, M. S. 1998. Proteinase requirements of epidermal growth factor-induced ovarian cancer cell invasion. Int J Cancer, 78, 331-7.
    • Ellis, M. V, James, S. R, Perisic, O, Downes, C. P, Williams, R. L. & Katan, M. 1998. Catalytic domain of phosphoinositide-specific phospholipase C (PLC). Mutational analysis of residues within the active site and hydrophobic ridge of plcdelta1. J Biol Chem, 273, 11650-9.
    • Endruschat, J. & Henschke, K. 2000. Bench scale manufacture of multilamellar liposomes using a newly developed multistage pressure filtration device. Int J Pharm, 196, 151-153.
    • Eppstein, D. A. & Stewart, W. E, 2ND 1982. Altered pharmacological properties of liposomeassociated human interferon-alpha. J Virol, 41, 575-82.
    • Evjen, T. J, Nilssen, E. A, Fowler, R. A, Rognvaldsson, S, Brandl, M. & Fossheim, S. L. 2011.
    • Lipid membrane composition influences drug release from dioleoylphosphatidylethanolaminebased liposomes on exposure to ultrasound. Int J Pharm, 406, 114-6.
    • Farrar, M. A. & Schreiber, R. D. 1993. The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol, 11, 571-611.
    • Felgner, P. L, Holm, M. & Chan, H. 1989. Cationic liposome mediated transfection. Proceedings of the Western Pharmacology Society, 32, 115-21.
    • Fieser, L. & Williamson, K.I. Organic Experiments. 1992. 7th Ed. D.C Heath and Company, Toronto. Ch 23, 247.
    • Forge, A, Zajic, G, Davies, S, Weiner, N. & Schacht, J. 1989. Gentamicin alters membrane structure as shown by freeze-fracture of liposomes. Hearing Research, 37, 129-139.
    • Francis, R. J, Sharma, S. K, Springer, C, Green, A. J, Hope-Stone, L. D, Sena, L, Martin, J, Adamson, K. L, Robbins, A, Gumbrell, L, O'malley, D, Tsiompanou, E, Shahbakhti, H, Webley, S, Hochhauser, D, Hilson, A. J, Blakey, D. & Begent, R. H. 2002. A phase I trial of antibody directed enzyme prodrug therapy (ADEPT) in patients with advanced colorectal carcinoma or other CEA producing tumours. Br J Cancer, 87, 600-7.
    • Fransen, G. J, Salemink, P. J. M. & Crommelin, D. J. A. 1986. Critical parameters in freezing of liposomes. Int J Pharm, 33, 27-35 Freund, R. J, Wilson, W. J. & Sa, P. 2006. Regression analysis : statistical modeling of a response variable, Burlington, MA, Elsevier Academic Press.
    • Gaumet, M, Gurny, R. & Delie, F. 2007. Fluorescent biodegradable PLGA particles with narrow size distributions: preparation by means of selective centrifugation. Int J Pharm, 342, 222-30.
    • Gilbert, Jc, & Martin, Sf. 2011. Experimental organic chemistry; A miniscal and Giron, D & Goldvron,C. 1997 Use of DSC and TG for identification and quantification of dosage form. Journal of thermal analysis, 48,3 473 - 483.
    • Gold, R, Reichman, M, Greenberg, E, Ivanidze, J, Elias, E, Tsiouris, A. J, Comunale, J. P, Johnson, C. E. & Sanelli, P. C. 2010. Developing a New Reference Standard: Is Validation Necessary? Academic Radiology, 17, 1079-1082.
    • Goldbach, P, Dumont, S, Kessler, R, Poindron, P. & Stamm, A. 1995. Preparation and Characterization of Interferon-Gamma-Containing Liposomes. Int J Pharm, 123, 33-39.
    • Gomez-Hens, A. & Fernandez-Romero, J. M. 2005. The role of liposomes in analytical processes.
    • Trac-Trends in Analyt Chem, 24, 9-19.
    • Goormaghtigh, E. & Scarborough, G. A. 1986. Density-based separation of liposomes by glycerol gradient centrifugation. Analyt Biochem, 159, 122-131 Goossens, K, Haelewyn, J, Meersman, F, De Ley, M. & Heremans, K. 2003. Pressure- and temperature-induced unfolding and aggregation of recombinant human interferon-gamma: a Fourier transform infrared spectroscopy study. Biochem J, 370, 529-35.
    • Grant, As. & Latimer, D. 2003. Bromination and debromination of cholesterol: A self-enquiry based lab involving structure elucidation, reaction mechanism and 1H NMR. J.Chem.Ed 80, 670- 671.
    • Grant, A, Palzer, S, Hartnett, C, Bailey, T, Tsang, M. & Kalyuzhny, A. E. 2005. A cell-detachment solution can reduce background staining in the ELISPOT assay. Methods Mol Biol, 302, 87-94.
    • Gregoriadis, G. & Allison, A. C. 1974. Entrapment of proteins in liposomes prevents allergic reactions in pre-immunised mice. FEBS letters, 45, 71-4.
    • Zasadzinski, J. A, Wong, B, Forbes, N, Braun, G. & Wu, G. 2011. Novel Methods of Enhanced Retention in and Rapid, Targeted Release from Liposomes. Curr Opin Colloid Interface Sci, 16, 203-214.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article