LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lopez-Clavijo, Andrea F.
Languages: English
Types: Doctoral thesis
Subjects: QD, QP
The thesis presents the study of the reaction of glyoxal (ethanedial) with polypeptides. This\ud reaction is important in the food industry as well as during ageing and diabetes mellitus. To\ud study this reaction a Fourier transform ion cyclotron resonance mass spectrometer coupled with\ud electron capture dissociation and collisionally activated dissociation was used. Initially this\ud reaction was carried out in the neuropeptide Substance P to set up the reaction conditions,\ud sample preparation, as well as the instrumental parameters in the mass spectrometer.\ud The results in Substance P revealed two compounds, with mass additions assigned as C2O and\ud C2H2O2 from glyoxal, were formed. MS/MS results showed that the modification site for both\ud species could be located at either the arginine residue or at the N-terminus. Thus, in order to\ud distinguish N-terminus from arginine modification the position of the arginine was varied in\ud four model peptides. The results indicated that both mass additions C2O, C2H2O2 were located\ud at the arginine residue. Interestingly, two of those model peptides showed an unusual mass\ud addition of 21.9843 Da, which was assigned as a new type of glyoxal modification at the arginine\ud residue showing the addition of two carbon atoms from glyoxal and the loss of two hydrogen\ud atoms from the peptide (C2-H2), herein referred to as 2-imino-imidazole.\ud In order to assess the involvement of other residues in the reaction with glyoxal a new set of\ud experiments in acetylated and non-acetylated undecapeptides were carried out. Unexpectedly,\ud these experiments revealed that two species with the same mass (16.01092 Da) were being\ud formed in the non-acetylated peptide. One of the species corresponded to diglycation, where the\ud results suggest that the glyoxal binding at the lysine residue is crosslinked with the N-terminus.\ud The second species showing the addition of 116.01092 Da was formed at the arginine residue\ud forming a species, here called a glyoxal dimer, at the arginine residue. The formation of the\ud glyoxal dimer species was also observed in the acetylated peptide. Although is clear that\ud crosslinking between the lysine residue and the N-terminus is not possible in the acetylated\ud peptide, the results seem to indicate that crosslinking between the amino group of the lysine\ud and the amide group of glutamine could occur. However, a systematic study varying the position\ud of the lysine relative to the glutamine residue and also relative to the N-terminus needs to be\ud addressed in the future in order to determine the extent of the involvement of the N-terminus\ud and amide group in the glyoxal glycation reaction.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [111] Cotham, W. E. and Metz, T. O. and Ferguson, P. L. and Brock, J. W. C. and Hinton, D. J. S. and Thorpe, S. R. and Baynes, J. W. and Ames, J. M. Proteomic analysis of arginine adducts on glyoxal-modified ribonuclease. Mol.Cell. Proteomics, 3 (12):1145-53, 2004.
    • [112] Ames, J. M. Mass spectrometry to detect the site specificity of advanced glycation/lipoxidation end-product formation on protein: some challenges and solutions. Biochem. Soc. Trans., 36(Pt 5):1051-4, 2008.
    • [113] Thornalley, P. J. and Battah, N. and Ahmed, N. and Karachalias, S. and Agalou, R. Babaei-Jadidi, A. and Dawnay, A. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem. J., 375:581-592, 2003.
    • [114] Glomb, M. A. and Lang, G. Isolation and characterization of glyoxal-arginine modifications. J. Agr. Food Chem., 49(3):1493-501, 2001.
    • [115] Brock, J. W. C. and Hinton, D. J. S. and Cotham, W. E. and Metz, T. O. and Thorpe, S. R. and Baynes, J. W. and Ames, J. M. Proteomic Analysis of the Site Specificity of Glycation and Carboxymethylation of Ribonuclease. J. Proteome Res., 2:506-513, 2003.
    • [116] Ahmed, M. U. and Thorpe, S. R. and Baynes, J. W. Identification of N-epsiloncarboxymethyllysine as a degradation product of fructoselysine in glycated protein. J. Biol. Chem., 261(11):4889-4894, 1986.
    • [117] Al-Abed, Y. M. and Bucala, R. N -carboxymethyllysine formation by direct addition
    • [118] Hayashi, C. M. and Nagai, R. and Miyazaki, K. and Hayase, F. and Tomohiro, A. and Tomomichi, O. and Horiuchi, S. Conversion of Amadori Products of the Maillard Reaction to N - (carboxymethyl)lysine by Short-Term Heating : Possible Detection of Artifacts by Immunohistochemistry. Lab. Invest., 82(6):795-807, 2002.
    • [119] Shangari, N. and O'Brien, P. J. The cytotoxic mechanism of glyoxal involves oxidative stress. Biochem. Pharmacol., 68(7):1433-42, 2004.
    • [120] Mera, K. and Takeo, K. and Izumi, M. and Maruyama, T. and Nagai, R. and Otagiri, M. and Masaki, O. Effect of reactive-aldehydes on the modification and dysfunction of human serum albumin. J. Pharm. Sci., 99(3):1614-1625, 2010.
    • [125] H. Odani, T. Shinzato, J. Usami, Y. Matsumoto, E. B. Frye, J. W. Baynes, and K. Maeda. Imidazolium crosslinks derived from reaction of lysine with glyoxal and methylglyoxal are increased in serum proteins of uremic patients:Evidence for increased oxidative stress in uremia. FEBS Lett., 427(3):381-385, 1998.
    • [126] Eble, A. S. and Thorpe, S. R. and Baynes, J. W. Nonenzymatic glucosylation and glucose-dependent cross-linking of protein. J. Biol. Chem., 258(15):9406-12, 1983.
    • [127] Makita, Z. and Yanagisawa, K. and Kuwajima, S. and Yoshioka, N. and Atsumi, T. and Hasunuma, Y. and Koike, T. Amides are novel protein modifications formed by physiological sugars. J. Biol. Chem., 276(45):41638-41647, 2001.
    • [128] Biemel, K. M and Friedl, D. A. and Lederer, M. O. Identification and quantification of major maillard cross-links in human serum albumin and lens protein. Evidence for glucosepane as the dominant compound. J. Biol. Chem., 277(28):24907-15, 2002.
    • [129] Sell, D. R. and Monnier, V. M. Structure Elucidation of a Senescence Cross-link from Human Extracellular Matrix. J. Biol. Chem., 264:21597-21602, 1989.
    • [130] Biemel, K. M. and Conrad, J. and Lederer, M. O. Unexpected carbonyl mobility in aminoketoses: the key to major Maillard crosslinks. Angew. Chem. Int. Ed., 41(5): 801-4, 2002.
    • [131] Sell, D. R. and Biemel, K. M. and Reihl, O. and Lederer, M. O. and Strauch, C. M. and Monnier, V. M. Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes. J. Biol. Chem., 280(13): 12310-5, 2005.
    • [132] Alt, N. and Carson, J. A. and Alderson, N. L and Wang, Y. and Nagai, R.i and Henle, T. and Thorpe, S. R. and Baynes, J. W. Chemical modification of muscle protein in diabetes. Arch. Biochem. Biophys., 425(2):200-6, 2004.
    • [133] Zimmermang, M. B. and Blaine, E. H. Nonenzymatic Browning in vivo : Possible Process for Ageing of Long-Lived Proteins. Science, 211(30):491-493, 1981.
    • [134] Zhang, Y. and Coclking, R. R. and Bidasee, K. R. and Wang, M. Rapid determination of advanced glycation end products of proteins using MALDI-TOF-MS and PERLS script peptide searching algorithm. J. Biomol. Tech, 14(3):224-230, 2003.
    • [135] Montgomery, H. and Tanaka, K. and Belgacem, O. Glycation pattern of peptides condensed with maltose, lactose and glucose determined by ultraviolet matrixassisted laser desorption/ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom., 24(6):841-848, 2010.
    • [136] Brancia, F. L. and Bereszczak, J. A. and Lapola, A. and Fedele, D. and Baccarin, L. and Seraglia, R. and Traldi, P. Comprehensive analysis of glycated human serum albumin tryptic peptides by off-line liquid chromatography followed by MALDI analysis on a time-of-flight/curved field reflectron tandem mass spectrometer. J. Mass Spectrom., 41(9):1179-1185, 2006.
    • [137] Zhang, Q. and Frolov, A. and Tang, N. and Hoffmann, R. and Metz, T. O. and Smith, R. D. Application of electron transfer dissociation mass spectrometry in analyses of non-enzymatically glycated peptides. Rapid Commun. Mass Spectrom., pages 661-666, 2007.
    • [138] Lapolla, A. and Fedele, D. and Reitano, R. and Aricò, N. C. and Seraglia, R.
    • [139] Wynne, C. and Edwards, N. J. and Fenselau, C. Phyloproteomic classification of unsequenced organisms by top-down identification of bacterial proteins using capLC-MS-MS on an Orbitrap. Proteomics, 10(20):3631-3643, 2010.
    • [140] Stefanowicz, P. and Kijewska, M. and Szewczuk, Z. Sequencing of peptide-derived Amadori products by the electron capture dissociation method. J. Mass Spectrom., 44(7):1047-1052, 2009.
    • [141] Heck, A. J.R. and Jorgensen, T. J. D. Vancomycin in vacuo. Int. J. Mass Spectrom., 236(1-3):11-23, 2004.
    • [142] O'Connor, P. B. and Lin, C. and Cournoyer, J. J. and Pittman, J. L. and Belyayev, M. and Budnik, B. A. Long-lived electron capture dissociation product ions experience radical migration via hydrogen abstraction. J. Am. Soc. Mass Spectrom., 17(4): 576-585, 2006.
    • [143] Skurski, P. and Sobczyk, M. and Jakowski, J. and Simons, J. Possible mechanisms for protecting N C bonds in helical peptides from electron-capture (or transfer) dissociation. Int. J. Mass Spectrom., 265(2-3):197-212, 2007.
    • [144] Turecek, F. and Syrstad, E. A. and Seymour, J. L. and Chen, X. and Yao, C. Peptide cation-radicals. A computational study of the competition between peptide NCalpha bond cleavage and loss of the side chain in the [GlyPhe NH2 + 2 H]+ cation-radical. J. Mass Spectrom., 38(10):1093-1104, 2003.
    • [145] Carpenter, F. H. and Polce, M. J. and Wesdemiotis, C. Glycyl Radical Is a Stable Species in the Gas Phase. J. Am. Chem. Soc., 121(21):7955-7956, 1999.
    • [147] O'Hair, R. A. J. and Blanksby, S. and Styles, M.e and Bowie, J. H. Characterization of [M H] cations, radicals and anions of glycine in the gas phase: a combined experimental and ab initio study. Int. J. Mass Spectrom., 182-183:203-211, 1999.
    • [148] Zubarev, R. A. Reactions of polypeptide ions with electrons in the gas phase. Mass Spectrom. Rev., 22(1):57-77, 2003.
    • [149] Bythell, B. J. To Jump or Not To Jump? J. Phys. Chem. A, 117:1189-1196, 2013.
    • [150] Cooper, H. J. and Hudgins, R. R and Hakansson, K. and Marshall, A. G. Secondary fragmentation of linear peptides in electron capture dissociation. Int. J. Mass Spectrom., 228:723-728, 2003.
    • [151] Cooper, H. J. Investigation of the presence of b ions in electron capture dissociation mass spectra. J. Am. Soc. Mass Spectrom., 16(12):1932-1940, 2005.
    • [152] Lee, S. and Chung, G. and Kim, J. and Oh, H. B. Electron capture dissociation mass spectrometry of peptide cations containing a lysine homologue: a mobile proton model for explaining the observation of b type product ions. Rapid Commun. Mass Spectrom., 20:3167-3175, 2006.
    • [153] Liu, H. and Hakansson, K. Abundant b-type ions produced in electron capture dissociation of peptides without basic amino acid residues. J. Am. Soc. Mass Spectrom., 18(11):2007-2013, 2007.
    • [154] Haselmann, K. F. and Schmidt, M. Do b ions occur from vibrational excitation
    • [156] Gorshkov, M. V. and Masselon, C. D. and Nikolaev, E. N. and Udseth, H. R. and Smith, R. D. Considerations for electron capture dissociation efficiency in FTICR mass spectrometry. Int. J. Mass Spectrom., 234(1-3):131-136, 2004.
    • [157] Zubarev, R. A. and Witt, M. and Baykut, G. Two-fold efficiency increase by selective excitation of ions for consecutive activation by ion-electron reactions and vibrational excitation in tandem fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem., 77(9):2992-2996, 2005.
    • [158] Iavarone, A. T. and Paech, K. and Williams, E. R. Effects of charge state and cationizing agent on the electron capture dissociation of a peptide. Anal. Chem., 76(8):2231-2238, 2004.
    • [159] McFarland, M. A. and Chalmers, M. J and Quinn, J. P. and Hendrickson, C. L. and Marshall, A. G. Evaluation and optimization of electron capture dissociation efficiency in fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom., 16(7):1060-1066, 2005.
    • [160] Hakansson, K. and Emmett, M. R. and Hendrickson, C. L. and Marshall, A.G. High-sensitivity electron capture dissociation tandem FTICR mass spectrometry of microelectrosprayed peptides. Anal. Chem., 73(15):3605-3610, 2001.
    • [161] Kruger, N. A. and Zubarev, R. A. and Horn, D. M. and McLafferty, Fred W. Electron
    • [162] Polfer, N. C. and Haselmann, K. F. and Zubarev, R. A. and Langridge-Smith, P. R. R. Electron capture dissociation of polypeptides using a 3 Tesla Fourier transform ion cyclotron resonance mass spectrometer. Rapid Commun. Mass Spectrom., 16 (10):936-943, 2002.
    • [163] Tsybin, Y. O. and Hakansson, P. and Budnik, B. A. and Haselmann, K. F. and Kjeldsen, F. and Gorshkov, M. and Zubarev, R. A. Improved low-energy electron injection systems for high rate electron capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom., 15 (19):1849-1854, 2001.
    • [164] Tsybin, Y. O. and Quinn, J. P. and Hendrickson, C. L. and Marshall, A. G. Electron capture dissociation implementation progress in Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom., 19(6):762-771, 2008.
    • [165] Chan, W.Y.K. and Chan, T.W.D. Natural structural motifs that suppress peptide ion fragmentation after electron capture. J. Am. Soc. Mass Spectrom., 21(7): 1235-1244, 2010.
    • [166] Mormann, M. and Peter-Katalini´c, J. Improvement of electron capture efficiency by resonant excitation. Rapid Commun. Mass Spectrom., 17(19):2208-2214, 2003.
    • [167] Freiser, B. S. and Beauchamp, J. L. Electron impact dissociation of cyanobenzene radical cations by ion cyclotron resonance spectroscopy. Chem. Phys. Lett., 42(2): 380-382, 1976.
    • [168] Cody, R. B. and Freiser, B. S. Electron impact excitation of ions from organics: an alternative to collision induced dissociation. Anal. Chem., 51(4):547-551, 1979.
    • [169] Wang, B. and McLafferty, F. W. Electron impact excitation of ions from larger organic molecules. Org. Mass Spectrom., 25:554-556, 1990.
    • [170] Guan, Z. and Kelleher, N. L. and O'Connor, P. B. and Aaserud, D. J. and Little, D. P. and McLafferty, F. W. 193 nm Photodissociation of Larger Multiply-Charged Biomolecules. Int. J. Mass Spectrom., 157-158(96):357-364, 1996.
    • [171] Axelsson, J. and Palmblad, M. and Hakansson, K. and Hakansson, P. Electron capture dissociation of substance P using a commercially available Fourier transform ion cyclotron resonance mass spectrometer. Rapid Commun. Mass Spectrom., 13 (6):474-477, 1999.
    • [172] Kruger, N. A and Zubarev, R. A. and Carpenter, B. K. and Kelleher, N. L. and Horn, D. M. and Mclafferty, F. W. Electron capture versus energetic dissociation of protein ions. Int. J. Mass Spectrom., 182-183:1-5, 1999.
    • [173] Fung, Y. M. E. and Chan, T-W. D. Experimental and theoretical investigations of the loss of amino acid side chains in electron capture dissociation of model peptides. J. Am. Soc. Mass Spectrom., 16:1523-1535, 2005.
    • [174] Zubarev, R. A. and Kruger, N. A. and Fridriksson, E. K. and Lewis, M. A. and Horn, D. M. and Carpenter, B. K. and McLafferty, F. W. Electron Capture Dissociation of Gaseous Multiply-Charged Proteins Is Favored at Disulfide Bonds and Other Sites of High Hydrogen Atom Affinity. J. Am. Chem. Soc., 121(12):2857-2862, 1999.
    • [175] Kalli, A. and Hakansson, K. Preferential cleavage of S S and C S bonds in electron detachment dissociation and infrared multiphoton dissociation of disulfidelinked peptide anions. Int. J. Mass Spectrom., 263(1):71-81, 2007.
    • [176] Li, H. and O'Connor, P. B. Electron capture dissociation of disulfide, sulfurselenium, and diselenide bound peptides. J. Am. Soc. Mass Spectrom., 23(11): 2001-2010, 2012.
    • [177] Sawicka, A. and Skurski, P. and Hudgins, R. R. and Simons, J. Model Calculations Relevant to Disulfide Bond Cleavage via Electron Capture Influenced by Positively Charged Groups. J. Phys. Chem., 107(48):13505-13511, 2003.
    • [178] Simons, J. Mechanisms for S-S and N-C bond cleavage in peptide ECD and ETD mass spectrometry. Chem. Phys. Lett., 484(4-6):81-95, 2010.
    • [179] Uggerud, E. Electron capture dissociation of the disulfide bond? A quantum chemical model study. Int. J. Mass Spectrom., 234(1-3):45-50, 2004.
    • [180] Tsutakawa, S. E. and Medzihradszky, K. F. and Flint, A. J. and Burlingame, A. L. and Koshland, D.l E. Determination of in vivo phosphorylation sites in protein kinase c. J. Biol. Chem., 270:26807-26812, 1995.
    • [181] Stensballe, A. and Jensen, O. N. and Olsen, J. V. and Haselmann, K. F. and Zubarev, R. A. Electron capture dissociation of singly and multiply phosphorylated peptides. Rapid Commun. Mass Spectrom., 14:1793-1800, 2000.
    • [184] Lill, J. Proteomic tools for quantitation by mass spectrometry. Mass Spectrom. Rev., 22(3):182-194, 2003.
    • [185] Cooper, H. and Hakansson, K. and Marshall, A. and Hudgins, R. and Haselmann, K. and Kjeldsen, F. and Budnik, B. and Polfer, N. C. and Zubarev, R. A. The diagnostic value of amino acid side-chain losses in electron capture dissociation of polypeptides. Comment on: "Can the [M X] region in electron capture dissociation provide reliable information on amino acid composition of polypeptides?". Eur. J. Mass Spectrom., 9:221-222, 2003.
    • [186] Cooper, H. J. and Hudgins, R. R. and Hakansson, K. and Marshall, A. G. Characterization of amino acid side chain losses in electron capture dissociation. J. Am.n Soc. Mass Spectrom., 13(3):241-9, 2002.
    • [187] Turecek, F. and Chung, T. W. and Moss, C. L. and Wyer, J. A. and Ehlerding, A. and Holm, A. I. S. and Zettergren, H. and Nielsen, S. B. and Hvelplund, P. and Chamot-Rooke, J. and Bythell, B. and Paizs, B. The histidine effect. Electron transfer and capture cause different dissociations and rearrangements of histidine peptide cation-radicals. J. Am. Chem. Soc., 132(31):10728-10740, 2010.
    • [188] Chen, X. and Turecek, F. The arginine anomaly: arginine radicals are poor hydrogen atom donors in electron transfer induced dissociations. J. Am. Chem. Soc., 128(38):12520-12530, 2006.
    • [189] Siegbahn, P. E. M. and Blomberg, M. R. A. and Crabtree, R. H. Hydrogen transfer in the presence of amino acid radicals. Theor. Chem. Acc., 97:289-300, 1997.
    • [190] Haselmann, K. F. and Budnik, B. A. and Zubarev, R. A. Electron capture dissociation of b2+ peptide fragments reveals the presence of the acylium ion structure. Rapid Commun. Mass Spectrom., 14(23):2242-2246, 2000.
    • [191] Savitski, M. M and Nielsen, M. L. and Zubarev, R. A. Side-chain losses in electron capture dissociation to improve peptide identification. Anal. Chem., 79(6):2296- 2302, 2007.
    • [192] Leymarie, N. and Costello, C. E. and O'Connor, P. B. Electron capture dissociation initiates a free radical reaction cascade. J. Am. Chem. Soc., 125(29):8949-8958, 2003.
    • [193] Turecek, F. N-C( ) bond dissociation energies and kinetics in amide and peptide radicals. Is the dissociation a non-ergodic process? J. Am. Chem. Soc., 125: 5954-5963, 2003.
    • [194] Ding, L. and Brancia, F. L. Electron capture dissociation in a digital ion trap mass spectrometer. Anal. Chem., 78(6):1995-2000, 2006.
    • [195] Baba, T. and Hashimoto, Y. and Hasegawa, H. and Hirabayashi, A. and Waki, I. Electron capture dissociation in a radio frequency ion trap. Anal Chem., 76: 4263-4266, 2004.
    • [196] Lawson, J. D. Laser and accelerators. IEEE T. Nucl. Sci., NS-26:4217-4219, 1979.
    • [197] Syka, J. E. P. and Coon, J. J. and Schroeder, M. J. and Shabanowitz, J. and Hunt, D. F. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U.S.A., 101(26):9528-9533, 2004.
    • [198] Kjeldsen, F. and Haselmann, K. F. and Budnik, B. A. and Jense, F. and Zubarev, R. A. Dissociative capture of hot (3-13 eV) electrons by polypeptide polycations: an efficient process accompanied by secondary fragmentation. Chem. Phys. Lett., 355(1-2):201-206, 2002.
    • [199] Nguyen, V. H.and Afonso, C. and Tabet, J-C. Comparison of collision-induced
    • [200] Williams, J P. and Creese, A J. and Roper, D R. and Green, B N. and Cooper, H J. . Hot electron capture dissociation distinguishes leucine from isoleucine in a novel hemoglobin variant, hb askew, 54(d5)Val >Ile. J. Am. Soc. Mass Spectrom., 20 (9):1707-1713, 2009.
    • [201] Budnik, B. A. and Zubarev, R. A. MH2+ ion production from protonated polypeptides by electron impact: observation and determination of ionization energies and a cross-section. Chem. Phys. Lett., 316(1-2):19-23, 2000.
    • [202] Fung, Y. M. E. and Adams, C. M and Zubarev, R. A. Electron ionization dissociation of singly and multiply charged peptides. J. Am. Chem. Soc., 131(29):9977-9985, 2009.
    • [203] Nielsen, M. L. and Budnik, B. A. and Haselmann, Kim F. and Olsen, Jesper V. and Zubarev, R. A. Intramolecular hydrogen atom transfer in hydrogen-deficient polypeptide radical cations. Chem. Phys. Lett., 330(5-6):558-562, 2000.
    • [204] Nielsen, M. L. and Budnik, B. A and Haselmann, K. F. and Zubarev, R. A. Tandem MALDI/EI ionization for tandem Fourier transform ion cyclotron resonance mass spectrometry of polypeptides. Int. J. Mass Spectrom., 226:181-187, 2003.
    • [205] Yoo, E. J. and Feketeova, L. and Khairallah, G. N. and O'Hair, R. A. J. Unimolecular chemistry of doubly protonated zwitterionic clusters. J. Phys. Chem. A, 115(17): 4179-4185, 2011.
    • [206] Yoo, H. J. and Liu, H. and Hakansson, K. Infrared Multiphoton Dissociation and Electron-Induced Dissociation as Alternative MS / MS Strategies for Metabolite Identification. Anal. Chem., 79(20):7858-7866, 2007.
    • [207] Wolff, J. J. and Laremore, T. N. and Aslam, H. and Linhardt, R. J. and Amster, I. J. Electron-Induced Dissociation of Glycosaminoglycan Tetrasaccharides. J. Am. Soc. Mass Spectrom., 19:1449-1458, 2008.
    • [209] Budnik, B. A. and Haselmann, K. F. and Zubarev, R. A. Electron detachment dissociation of peptide di-anions: an electron hole recombination phenomenon. Chem. Phys. Lett., 342(3-4):299-302, 2001.
    • [210] Kjeldsen, F. and Silivra, O. A. and Ivonin, I. A. and Haselmann, K. F. and Gorshkov, M. and Zubarev, R. A. C -C backbone fragmentation dominates in electron detachment dissociation of gas-phase polypeptide polyanions. Chem. Eur. J., 11 (6):1803-1812, 2005.
    • [211] McFarland, M. A. and Marshall, A. G. and Hendrickson, C. L. and Nilsson, C. L and Fredman, P. and Mansson, J-E. Structural characterization of the GM1 ganglioside by infrared multiphoton dissociation, electron capture dissociation, and electron detachment dissociation electrospray ionization FT-ICR MS/MS. J. Am. Soc. Mass Spectrom., 16(5):752-762, 2005.
    • [212] Wolff, J. J. and Amster, I. J. and Chi, L. and Linhardt, R. J. Electron detachment dissociation of Glycosaminoglycan Tetrasaccharides. J. Am. Soc. Mass Spectrom., 18:234-244, 2007.
    • [213] Adamson, J. T. and Hakansson, K. Electron detachment dissociation of neutral and sialylated oligosaccharides. J. Am. Soc. Mass Spectrom., 18(12):2162-2172, 2007.
    • [215] Yang, J. and Mo, J. and Adamson, J. T. and Hakansson, K. Characterization of Oligodeoxynucleotides by Electron Detachment Dissociation Fourier Spectrometry. 77(6):1876-1882, 2005.
    • [221] Sze, S. K. and Ge, Y. and Oh, H. B. and McLafferty, F. W. Plasma electron capture dissociation for the characterization of large proteins by top down mass spectrometry. Anal. Chem., 75(7):1599-1603, 2003.
    • [223] Oh, H. and McLafferty, F. W. A varieet of activation methods employed in 'Activated-ion' electron capture. Bull. Korean. Chem. Soc., 27(3):389-394, 2006.
    • [224] Hamidane, H. B. and He, H. and Tsybin, O. Y. and Emmett, M. R. and Hendrickson, C. L. and Marshall, A. G. and Tsybin, Y. O. Periodic sequence distribution of product ion abundances in electron capture dissociation of amphipathic peptides and proteins. J. Am. Soc. Mass Spectrom., 20:1182-1192, 2009.
    • [225] Ge, Y. and Horn, D. M. and McLafferty, F. W. Blackbody infrared radiative dissociation of larger (42 kDa) multiply charged proteins. Int. J . Mass Spectrom., 210-211:203-214, 2001.
    • [226] Breuker, K. and Oh, H. B. and Horn, D. M. and Cerda, B. A. and McLafferty, F. W. Detailed unfolding and folding of gaseous ubiquitin ions characterized by electron capture dissociation. J. Am. Chem. Soc., 124(22):6407-20, 2002.
    • [228] Comisarov, M. B. and Grassi, V. and Parisor, G. Fourier transform ion cyclotron double resonance. J. Chem. Phys., 57:413-416, 1978.
    • [229] Lin, C. and Cournoyer, J. J. and O'Connor, P. B. Use of a double resonance electron capture dissociation experiment to probe fragment intermediate lifetimes. J. Am. Soc. Mass Spectrom., 17(11):1605-15, 2006.
    • [230] Lin, C. and Cournoyer, J. J. and O'Connor, P. B. Probing the gas-phase folding kinetics of peptide ions by IR activated DR-ECD. J. Am. Soc. Mass Spectrom., 19 (6):780-789, 2008.
    • [231] Boltalina, O. and Hvelplund, P. and Jorgensen, T. and Larsen, M. and Larsson, M. and Sharoitchenko, D. Electron capture by fluorinated fullerene anions in collisions with Xe atoms. Phys. Rev. A, 62(2):023202, 2000.
    • [236] S. Bari, R. Hoekstra, and T. Schlatholter. Fast side-chain losses in keV ion-induced dissociation of protonated peptides. Int. J. Mass Spectrom., 299(1):64-70, 2011.
    • [237] Vasil'ev, Y. V. and Figard, B. J. and Morré, J. and Deinzer, M. L. Fragmentation of peptide negative molecular ions induced by resonance electron capture. J. Chem. Phys., 131(4):044317-1 - 044317-11, 2009.
    • [238] Thorne, L. R. and Beauchamp, J. L. and in M.T. Bowers (Ed.). Gas Phase Ion Chemistry, Vol. 3, Academic Press, New York. 1984.
    • [244] Price, S. D. Interactions of molecular doubly charged ions with atoms, molecules and photons. J. Chem. Soc Faraday T., 93(15):2451-2460, 1997.
    • [246] Neff, D. and Smuczynska, S. and Simons, J. Electron shuttling in electron transfer dissociation. Int. J. Mass Spectrom., 283(1-3):122-134, 2009.
    • [247] Sobczyk, M. and Simons, J. The role of excited Rydberg States in electron transfer dissociation. J. Phys. Chem. B, 110(14):7519-27, 2006.
    • Environ. Sci. Technol., 43(8):2818-2824, 2009.
    • [267] Bunn, H. F and Shapiro, R. and McManus, M. and Garrick, L. and McDonald, M. J. and Gallop, P. M. and J., Gabbay K. Structural heterogeneity of human hemoglobin-A due to non-enzmatic glycosylation. J. Biol. Chem., 254(10):3892- 3898, 1979.
    • [268] Ahmed, N. and Thornalley, P. J. and Dawczynski, J. and Franke, S. and Strobel, J. and Stein, G. and Haik, G. M. Methylglyoxal-derived hydroimidazolone advanced glycation end-products of human lens proteins. Invest. Ophthalmol. Visual Sci., 44(12):5287-5292, 2003.
    • [269] Carter, D. C. and Ho, J. X. Structure of serum albumin. In Adv. Protein Chem., pages 158-159. 1994.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article