Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Khan, Rais Ahmad; de Almeida, Andreia; Al-Farhan, Khalid; Alsalme, Ali; Casini, Angela; Ghazzali, Mohamed; Reedijk, Jan (2016)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: QD
New first-row transition-metal compounds with the ligand norharmane (9H-Pyrido[3,4-b]indole; Hnor) are reported. The compounds have the general formula [M(LL)(Hnor)(NO3)2](MeOH)0–1 (M = Co, Ni, Cu, Zn; LL = 2,2′-bipyridyl (bpy), 1,10-phenanthroline (phen)) and have been characterized by physical and analytical methods. X-ray structural analysis revealed that the compound of formula [Cu(phen)(Hnor)(NO3)2], (1) has a distorted 6-coordinated octahedrally-based geometry, with a planar-based [CuN3O] core, where Cu-L varies between 1.99 and 2.04 Å and two weak axial Cusingle bondO contacts (2.209 and 2.644 Å) from two different nitrates. Based on spectroscopic similarities, the other compounds appear to have the same or very similar coordination geometries. The compounds showed clear cell growth inhibitory effects in two different cancer cell lines in vitro, with the copper and zinc complexes being the most toxic and in fact almost comparable to cisplatin. Flow-cytometry analysis confirmed induction of apoptosis in cancer cells treated with the compounds. Interestingly, co-incubation of the cells with metal complexes and CuCl2 induced an increase in the cytotoxic effects, most likely due to the conversion of the metal compounds in the corresponding, and most active, copper analogues.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • S. Komeda, A. Casini, Curr.Top.Med.Chem 12 (2012) 219-235.
    • B. Bertrand, A. Casini, Dalton Trans. 43 (2014) 4209-4219.
    • C.N. Banti, S.K. Hadjikakou, K. Sotoris, Metallomics 5 (2013) 569-596.
    • B. Biersack, A. Ahmad, F.H. Sarkar, R. Schobert, Curr. Med. Chem. 19 (2012) 3949-3956.
    • M. Collins, D. Ewing, G. Mackenzie, E. Sinn, U. Sandbhor, S. Padhye, Inorg. Chem. Commun. 3 (2000) 453-457.
    • A. Kellett, M. O'Connor, M. McCann, M. McNamara, P. Lynch, G. Rosair, V. McKee, B. Creaven, M. Walsh, S. McClean, A. Foltyn, D. O'Shea, O. Howe, M. Devereux, Dalton Trans. 40 (2011) 1024- 1027.
    • A. Tarushi, J. Kljun, I. Turel, A.A. Pantazaki, G. Psomas, D.P. Kessissoglou, New J. Chem. 37 (2013) 342-355.
    • Casini, I. Turel, G. Psomas, RSC Advances 6 (2016) 19555-19570.
    • Y. Chen, M.Y. Qin, J.H. Wu, L. Wang, H. Chao, L.N. Ji, A.L. Xu, Eur. J. Med. Chem. 70 (2013) 120- 129.
    • C. Demeester, Mutat. Res.-Rev. Genet. Toxicol. 339 (1995) 139-153.
    • D. Fekkes, M.J. Schouten, L. Pepplinkhuizen, J. Bruinvels, W. Lauwers, U.A. Brinkman, Lancet 339 (1992) 506-506.
    • X.W. Lou, J. van Buijtenen, J. Bastiaansen, B.F.M. de Waal, B.M.W. Langeveld, J.L.J. van Dongen, J. Mass Spectrom. 40 (2005) 654-660.
    • H.R. Snyder, H.G. Walker, F.X. Werber, J. Am. Chem. Soc. 71 (1949) 527-529.
    • C.P. Tan, S.H. Wu, S.S. Lai, M.X. Wang, Y. Chen, L.J. Zhou, Y.P. Zhu, W. Lian, W.L. Peng, L.N. Ji, A.L. Xu, Dalton Trans. 40 (2011) 8611-8621.
    • Biochem. 140 (2014) 1-5.
    • R. Kannappan, D.M. Tooke, A.L. Spek, J. Reedijk, J. Mol. Struct. 751 (2005) 55-59.
    • A. Mohamadou, G.A. van Albada, I. Mutikainen, U. Turpeinen, J. Marrot, J. Reedijk, Polyhedron 28 (2009) 2813-2820.
    • J. Reedijk, Inorg. Chim. Acta 198-200 (1992) 873-881.
    • J. Reedijk, Eur. J. Inorg. Chem. (2009) 1303-1312.
    • J. Reedijk, Chem. Soc. Rev. 42 (2013) 1776-1783.
    • Biochem. 44 (2006) 135-142.
    • A.M. Morin, Brain Res. 321 (1984) 151-154.
    • H. Kim, S.O. Sablin, R.R. Ramsay, Arch. Biochem. Biophys. 337 (1997) 137-142.
    • Y. Funayama, K. Nishio, K. Wakabayashi, M. Nagao, K. Shimoi, T. Ohira, S. Hasegawa, N. Saijo, Mutat. Res.-Fundam. Mol. Mech. Mutagen. 349 (1996) 183-191.
    • M. Salimi, K. Abdi, H. M. Kandelous, H. Hadadzadeh, K. Azadmanesh, A. Amanzadeh, H. Sanati, Biometals 28 (2015) 267.
    • P. Martinez-Bulit, A. Garza-Ortíz, E. Mijangos, L. Barrón-Sosa, F. Sánchez-Bartéz, I. Gracia-Mora, A. Flores-Parra, R. Contreras, J. Reedijk, N. Barba-Behrens, J. Inorg. Biochem. 142 (2015) 1-7.
    • S. Spreckelmeyer, C. Orvig, A. Casini, Molecules 19 (2014) 15584-15610.
    • Rigaku, Crystal Clear. Crystal Structure Analysis Package, Rigaku,, The Woodlands TX 77381, 2007.
    • G.M. Sheldrick, Acta. Cryst. (A) 64 (2008) 112-122.
    • Diamond, Crystal Impact GbR ver 3.1e, Bonn (Germany), 2007.
    • G.W. Snedecor, G. William, Statistical Methods, Eighth Edition, . Iowa State University Press, 1989.
    • Soc. Dalton Trans. (1985) 2177-2184.
    • A.B.P. Lever, Inorganic electronic spectroscopy, Elsevier, Amsterdam, 1984.
    • L. Rigamonti, A. Forni, R. Pievo, J. Reedijk, A. Pasini, Inorg. Chim. Acta 387 (2012) 373-382.
    • S. Spreckelmeyer, C. Orvig, A. Casini, Molecules 19 (2014) 15584-15610.
    • H. Irving, R.J.P. Williams, J. Chem. Soc. (1953) 3192-3210.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NIH | 1st International Symposium...

Cite this article