Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bogner, Manuel; Benstetter, Günther; Fu, Yong Qing (2017)
Publisher: Elsevier BV
Journal: Surface and Coatings Technology
Languages: English
Types: Article
Subjects: Chemistry(all), Condensed Matter Physics, Surfaces, Coatings and Films, Surfaces and Interfaces, Materials Chemistry, H600
Thickness dependency and interfacial structure effects on thermal properties of AlN thin films were systematically investigated by characterizing cross-plane and in-plane thermal conductivities, crystal structures, chemical compositions, surface morphologies and interfacial structures using an extended differential 3ω method, X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy, atomic force microscopy (AFM) and transmission electron microscopy. AlN thin films with various thicknesses from 100 to 1000 nm were deposited on p-type doped silicon substrates using a radio frequency reactive magnetron sputtering process. Results revealed that both the cross- and in-plane thermal conductivities of the AlN thin films were significantly smaller than those of the AlN in a bulk form. The thermal conductivities of the AlN thin films were strongly dependent on the film thickness, in both the cross- and in-plane directions. Both the XRD and AFM results indicated that the grain size significantly affected the thermal conductivity of the films due to the scattering effects from the grain boundary.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] J. Zhou, H.F. Pang, L. Garcia-Gancedo, E. Iborra, M. Clement, M. de Miguel-Ramos, H. Jin, J.K. Luo, S. Smith, S.R. Dong, D.M. Wang, Y.Q. Fu, Discrete microfluidics based on aluminum nitride surface acoustic wave devices, Microfluid. Nanofluid. 18 (4) (2015) 537-548.
    • [2] M. Clement, L. Vergara, J. Sangrador, E. Iborra, A. Sanz-Hervas, SAW characteristics of AlN films sputtered on silicon substrates, Ultrasonics 42 (1-9) (2004) 403-407.
    • [3] H. Witte, A. Rohrbeck, K.-M. Günther, P. Saengkaew, J. Bläsing, A. Dadgar, A. Krost, Electrical investigations of AlGaN/AlN structures for LEDs on Si(111), Phys. Status Solidi A 208 (7) (2011) 1597-1599.
    • [4] A. Jacquot, B. Lenoir, A. Dauscher, P. Verardi, F. Craciun, M. Stölzer, M. Gartner, M. Dinescu, Optical and thermal characterization of AlN thin films deposited by pulsed laser deposition, Appl. Surf. Sci. 186 (1-4) (2002) 507-512.
    • [5] Y. Zhao, C. Zhu, S. Wang, J.Z. Tian, D.J. Yang, C.K. Chen, H. Cheng, P. Hing, Pulsed photothermal reflectance measurement of the thermal conductivity of sputtered aluminum nitride thin films, J. Appl. Phys. 96 (8) (2004) 4563.
    • [6] G.A. Slack, R.A. Tanzilli, R.O. Pohl, J.W. Vandersande, The intrinsic thermal conductivity of AIN, J. Phys. Chem. Solids 48 (7) (1987) 641-647.
    • [7] P.K. Kuo, G.W. Auner, Z.L. Wu, Microstructure and thermal conductivity of epitaxial AlN thin films, Thin Solid Films 253 (1-2) (1994) 223-227.
    • [8] T.S. Pan, Y. Zhang, J. Huang, B. Zeng, D.H. Hong, S.L. Wang, H.Z. Zeng, M. Gao, W. Huang, Y. Lin, Enhanced thermal conductivity of polycrystalline aluminum nitride thin films by optimizing the interface structure, J. Appl. Phys. 112 (4) (2012) 44905.
    • [9] S.-M. Lee, D.G. Cahill, Heat transport in thin dielectric films, J. Appl. Phys. 81 (6) (1997) 2590.
    • [10] D.G. Cahill, K. Goodson, A. Majumdar, Thermometry and thermal transport in micro/ nanoscale solid-state devices and structures, J. Heat Transf. 124 (2) (2002) 223.
    • [11] S.R. Choi, D. Kim, S.-H. Choa, S.-H. Lee, J.-K. Kim, Thermal conductivity of AlN and SiC thin films, Int. J. Thermophys. 27 (3) (2006) 896-905.
    • [12] R. Kato, A. Maesono, R.P. Tye, Thermal conductivity measurement of submicronthick films deposited on substrates by modified ac calorimetry (laser-heating Ångstrom method), Int. J. Thermophys. 22 (2) (2001) 617-629.
    • [13] D.G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3ω method, Rev. Sci. Instrum. 61 (2) (1990) 802.
    • [14] T. Borca-Tasciuc, A.R. Kumar, G. Chen, Data reduction in 3ω method for thin-film thermal conductivity determination, Rev. Sci. Instrum. 72 (4) (2001) 2139.
    • [15] Y. Ju, K. Kurabayashi, K. Goodson, Thermal characterization of anisotropic thin dielectric films using harmonic Joule heating, Thin Solid Films 339 (1) (1999) 160-164.
    • [16] W.L. Liu, T. Borca-Tasciuc, G. Chen, J.L. Liu, K.L. Wang, Anisotropic thermal conductivity of Ge quantum-dot and symmetrically strained Si/Ge superlattices, J. Nanosci. Nanotechnol. 1 (1) (2001) 39-42.
    • [17] Y. Lee, G.S. Hwang, Mechanism of thermal conductivity suppression in doped silicon studied with nonequilibrium molecular dynamics, Phys. Rev. B 86 (7) (2012).
    • [18] J.H. Choi, J.Y. Lee, J.H. Kim, Phase evolution in aluminum nitride thin films on Si(100) prepared by radio frequency magnetron sputtering, Thin Solid Films 384 (2) (2001) 166-172.
    • [19] A. Bourret, A. Barski, J.L. Rouvière, G. Renaud, A. Barbier, Growth of aluminum nitride on (111) silicon: microstructure and interface structure, J. Appl. Phys. 83 (4) (1998) 2003-2009.
    • [20] G. Radtke, M. Couillard, G.A. Botton, D. Zhu, C.J. Humphreys, Structure and chemistry of the Si(111)/AlN interface, Appl. Phys. Lett. 100 (1) (2012) 11910.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article