LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
France, Lydéric; Koepke, Juergen; MacLeod, Christopher; Ildefonse, Benoit; Godard, Marguerite; Deloule, Etienne (2014)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: QE
Mid-ocean ridge basalts (MORBs) are the most abundant magmas produced on Earth. They are widely studied to infer mantle compositions and melting processes. However, MORB liquids are also the complex end-product of a variety of intra-crustal processes such as partial or fractional crystallization, melt–rock interaction, and contamination. Deciphering the relative contribution of these different processes is of first-order importance. Contamination at ocean crustal levels is likely, and may occur at magma chamber margins where fresh magmas can interact with previously hydrothermally altered rocks. Characterizing the composition of this crustal contaminant component is critical if we are to understand the relative importance of each component in the resulting MORB liquid.\ud \ud Here we present the results of experiments designed to reproduce the processes occurring at oceanic magma chamber roofs, where crustal contamination should be most extensive, by melting a representative sample of the sheeted dike complex. Anatectic melts thus produced are likely to represent the principal crustal contaminant in MORB. These melts were characterized for major and trace elements, showing B, Zr, Hf, and U enrichment, and Sr, Ti, and V depletion relative to original MORB liquids. In comparison to the starting material, relative element fractionations are observed in the anatectic melts, with enrichments of: U relative to Ba, Nb, and Th; LREE and MREE relative to Sr; and Zr–Hf relative to LREE. Bulk partition coefficients for element partitioning during magma chamber roof anatexis are derived and proposed as valuable tools for tracking MORB contamination.\ud \ud Comparison with natural samples from the East Pacific Rise and the Oman ophiolite shows that anatectic melts can crystallize in situ to form oceanic plagiogranite intrusions, and that residual assemblages associated with the hydrous partial melting stage are represented by hornfelsic dikes and enclaves (also named granoblastic basalts). We now recognize these as commonplace at the root of the sheeted dike complex both at present-day and fossil oceanic spreading centers.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aigner-Torres, M., Blundy, J., Ulmer, P., Pettke, T., 2007. Laser ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach. Contributions to Mineralogy and Petrology 153, 647-667. doi:10.1007/s00410-006-0168-2.
    • Alt, J.C., Honnorez, J., Laverne, C., Emmermann, R., 1986. Hydrothermal alteration of a 1km section through the upper oceanic crust, deep sea drilling project Hole 504b: Mineralogy, chemistry, and evolution of seawater-basalt interactions. Journal of Geophysical Research 91-B10, 10,309- 10,335.
    • Berndt, J., Koepke, J., Holtz, F., 2005. An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. Journal of Petrology 46, 135-167.
    • Babcock, J.M., Harding A.J., Kent G.M., Orcutt J.A., 1998. An examination of along-axis variation of magma chamber width and crustal structure on the East Pacific Rise between 13°30′N and 12°20′N. Journal of Geophysical Research 103-B12, 30451-30467. doi:10.1029/98JB01979.
    • Boudier, F., Nicolas, A., Ildefonse, B., 1996. Magma chambers in the Oman ophiolite: fed from the top and the bottom. Earth and Planetary Science Letters 144, 239-250. doi:10.1016/0012- 821X(96)00167-7.
    • Boudier, F., Godard, M., Armbruster, C., 2000. Significance of gabbronorite occurrence in the crustal section of the Semail ophiolite. Marine Geophysical Research 21, 307-326. doi:10.1023/A:1026726232402
    • Brophy, J.G., 2008. A study of rare earth element (REE)-SiO2 variations in felsic liquids generated by basalt fractionation and amphibolite melting: a potential test for discriminating between the two different processes. Contributions to Mineralogy and Petrology 156, 337-357. doi:10.1007/s00410-008-0289-x.
    • Brophy, J.G., 2009. La-SiO2 and Yb-SiO2 systematics in mid-ocean ridge magmas: implications for the origin of oceanic plagiogranite. Contributions to Mineralogy and Petrology 158, 99-111. doi: 10.1007/s00410-008-0372-3.
    • Carbotte, S.M., Marjanovic, M., Carton, H., Mutter, J.C., Canales, J.P., Nedimovic, M.R., Han, S., Perfit, M.R., 2013. Fine-scale segmentation of the crustal magma reservoir beneath the EPR. Nature Geoscience, 6, 866-870, doi:10.1038/NGEO1933
    • Caress, D.W., Burnett, M.S., 1992. Tomographic image of the axial low-velocity zone at 12°50′N on the East Pacific Rise. Journal of Geophysical Research 97, 9243-9263. doi:10.1029/92JB00287
    • Carignan, J., Hild, P., Mevelle, G., Morel, J., Yeghicheyan, D., 2001. Routine analyses of trace element in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostandards Newsletter 25, 187-198. doi:10.1111/j.1751- 908X.2001.tb00595.x
    • Chaussidon, M., Marty, B., 1995. Primitive boron isotope composition of the mantle. Science 269, 383-386.
    • Coleman, R.G., Peterman, Z.E., 1975. Oceanic plagiogranite. Journal of Geophysical Research 80, 1099-1108.
    • Coogan, L.A., 2003. Contaminating the lower crust in the Oman ophiolite. Geology 31-12, 1065-1068.
    • Coogan, L.A., Mitchell, N.C., O'Hara, M.J., 2003. Roof assimilation at fast spreading ridges: An investigation combining geophysical, geochemical, and field evidence. Journal of Geophysical Research 108-B1, 2002. doi:10.1029/2001JB001171
    • Cordier, C., Caroff, M., Juteau, T., Fleutelot, C., Hémond, C., Drouin, M., Cotton, J., Bollinger, C., 2007. Bulk-rock geochemistry and plagioclase zoning in lavas exposed along the northern flank of the Western Blanco Depression (Northeast Pacific): Insight into open-system magma chamber processes. Lithos 99, 289-311.
    • Crawford, W.C., Webb, S.C., Hildebrand, J.A., 1999. Contraints on melt in the lower crust and Moho at the East Pacific Rise, 9°48'N, using seafloor compliance measurements. Journal of Geophysical Research 104-B2, 2923-2939. doi:10.1029/1998JB900087
    • Detrick, R.S., Buhl, P., Vera, E., Mutter, J., Orcutt, J., Madsen, J., Brocher, T., 1987. Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature 326, 35-41.
    • Drouin, M., Godard, M., Ildefonse, B., Bruguier, O., Garrido, C.J., 2009. Geochemical and petrographic evidence for magmatic impregnation in the oceanic lithosphere at Atlantis Massif, MAR (IODP Hole U1309D, 30°N). Chemical Geology, 264, 71-88.
    • Dunn, R.A., Toomey, D.R., Solomon, S.C., 2000. Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9°30'N. Journal of Geophysical Research 105-B10: 23,537-23,555. doi:10.1029/2000JB900210
    • Einaudi, F., Godard, M., Pezard, P., Cochemé, J.-J., Brewer, T., Harvey, P., Coulon, C., 2003. Magmatic cycles and formation of the upper oceanic crust at spreading centers: Geochemical study of a continuous extrusive section in the Oman ophiolite. Geochemistry, Geophysics, Geosystems 4, 8608, doi:8610.1029/2002GC000362.
    • Elliott, T., Spiegelman, M., 2003. 3.14. Melt migration in oceanic crustal production: A Useries perspective. Treatise on Geochemistry 2, The Mantle and Core (ed. Carlson, R.W.) 465-510.
    • Fahey, A.J., Zinner, E.K., Crozaz, G., Kornacki, A.S., 1987. Microdistributions of Mg isotopes and REE abundances in a Type A calcium-aluminum-rich inclusion from Efremovka. Geochimica et Cosmochimica Acta 51, 3215-3229. doi:10.1016/0016-7037(87)90130-X.
    • France, L., 2009. Magmatic / hydrothermal interactions at fast spreading mid-ocean ridges: Implications on the dynamics of the axial melt lens. PhD thesis, Géosciences Montpellier, Université de Montpellier II, Montpellier, France; http://tel.archives-ouvertes.fr/tel-00448699
    • France, L., Nicollet, C., 2010. MetaRep, an extended CMAS 3D program to visualize mafic (CMAS, ACF-S, ACF-N), and pelitic (AFM-K, AFM-S, AKF-S) projections. Computers and Geosciences 36, 786-791. doi:10.1016/j.cageo.2010.01.001
    • France, L., Ildefonse, B., Koepke, J., 2009a. Interactions between magma and hydrothermal system in Oman ophiolite and in IODP Hole 1256D: Fossilization of a dynamic melt lens at fast spreading ridges. Geochemistry, Geophysics, Geosystems 10-10, .Q10O19. doi: 10.1029/2009GC002652
    • France, L., Ouillon, N., Chazot, G., Kornprobst, J., Boivin, P., 2009b. CMAS 3D, a new program to visualize and project major elements compositions in the CMAS system. Computers and Geosciences 35, 1304-1310. doi:10.1016/j.cageo.2008.07.002
    • France, L., Koepke, J., Ildefonse, B., Cichy, S.B., Deschamps, F., 2010. Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations. Contributions to Mineralogy and Petrology 160-5, 683-704. doi: 10.1007/s00410-010-0502-6
    • France, L., Ildefonse, B., Koepke, J., 2013. Hydrous magmatism triggered by assimilation of hydrothermally altered rocks in fossil oceanic crust (Northern Oman ophiolite). Geochemistry, Geophysics, Geosystems 14-8, 2598-2614. doi: 10.1002/ggge.20137
    • Gale, A., Dalton, C.A., Langmuir, C.H., Su, Y., Schilling, J.G., 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14, doi:10.1029/2012GC004334.
    • Gillis, K.M., Roberts, M.D., 1999. Cracking at the magma-hydrothermal transition: Evidence from the Troodos ophiolite, Cyprus. Earth and Planetary Science Letters 169, 227-244. doi:10.1016/S0012-821X(99)00087-4
    • Gillis, K.M., 2002. The root zone of an ancient hydrothermal system exposed in the Troodos ophiolite, Cyprus. The Journal of Geology 110, 57-74. doi:10.1086/324205
    • Gillis, K.M., Coogan, L.A., 2002. Anatectic migmatites from the roof of an ocean ridge magma chamber. Journal of Petrology 43, 2075-2095.
    • Gillis, K.M., Coogan, L.A., Chaussidon, M., 2003. Volatile element (B, Cl, F) behavior in the roof of an axial magma chamber from the East Pacific Rise. Earth and Planetary Science Letters 213, 447-462.
    • Gillis, K.M., 2008. The roof of an axial magma chamber: A hornfelsic heat exchanger. Geology 36-4, 299-302. doi: 10.1130/G24590A.1.
    • Grimes, C.B., Ushikubo, T., John, B.E., Valley, J.W., 2011. Uniformly mantle-like δ18O in zircons from oceanic plagiogranites and gabbros. Contributions to Mineralogy and Petrology 161, 13- 33. Doi:10.1007/s00410-010-0519-x
    • Grimes, C.B., Ushikubo, T., Kozdon, R., Valley, J.W., 2013. Perspectives on the origin of plagiogranite in ophiolites from oxygen isotopes in zircon. Lithos 179, 48-66. doi: 10.1016/j.lithos.2013.07.026
    • Grove, T.L., Kinzler, R.J., Bryan, W.B., 1992. Fractionation of mid-ocean ridge basalt (MORB). In: Phipps Morgan, J., Blackman, D.K., Sinton, J.M. (Eds.), Mantle Flow and Melt Generation at Mid-Ocean Ridges. American Geophysical Union, Washington DC, pp. 281-310.
    • Haase, K.M., Stroncik, N.A., Hékinian, R., Stoffers, P., 2005. Nb-depleted andesites from the PacificAntarctic Rise as analogs for early continental crust. Geology 33-12, 921-924. doi: 10.1130/G21899.1
    • Henstock, T.J.,Woods, A.W., White, R.S., 1993. The accretion of oceanic crust by episodic sill intrusion. Journal of Geophysical Research 98 (B3), 4143-4161.
    • Hofmann, A.W., White, W.M., 1982. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters 57, 421-436.
    • Hooft, E.E.E., Detrick, R.S., Kent, G.M., 1997. Seismic structure and indicators of magma budget along the southern East Pacific Rise. Journal of Geophysical Research 102-B12, 27 319-27 340. doi:10.1029/97JB02349.
    • Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 532-548.
    • Johannes, W., Koepke, J., 2001. Uncomplete reaction of plagioclase in experimental dehydration melting of amphibolite. Australian Journal of Earth Sciences 48, 581-590.
    • Klein, E.M., 2003. Geochemistry of the Igneous oceanic crust, in Rudnick, R.L., (Eds.), Treatise on Geochemistry Vol. 3, The Crust. Pergamon, pp. 433-463.
    • Klein, E.M., Langmuir, C.H., 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research 92, 8089-8115.
    • Koepke, J., Berndt, J., Feig, S.T., Holtz, F., 2007. The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology 153, 67-84. doi : 10.1007/s00410-006-0135-y
    • Koepke, J., Christie, D.M., Dziony, W., Holtz, F., Lattard, D., Maclennan, J., Park, S., Scheibner, B., Yamasaki, T., Yamazaki, S., 2008. Petrography of the Dike/Gabbro Transition at IODP Site 1256 (Equatorial Pacific): The evolution of the Granoblastic Dikes. Geochemistry, Geophysics, Geosystems 9-7, Q07O09. doi:10.1029/2008GC001939
    • Koepke, J., France, L., Müller, T., Faure, F., Goetze, N., Dziony, W., Ildefonse, B., 2011. Gabbros from IODP Site 1256, equatorial Pacific: Insight into axial magma chamber processes at fast spreading ocean ridges. Geochemistry Geophysics Geosystems 12-9, Q09014. doi:10.1029/2011GC003655.
    • Lamoureux, G., Ildefonse, B., Mainprice, D., 1999. Modelling the seismic properties of fast-spreading ridge crustal Low-Velocity Zones: insights from Oman gabbro textures. Tectonophysics 312, 283-301.
    • Le Roux, P.J., Shirey, S.B., Hauri, E.H., Perfit, M.R., Bender, J.F., 2006. The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8-10°N and 12-14°N): Evidence from volatiles (H2O, CO2, S) and halogens (F, Cl). Earth and Planetary Science Letters 251, 209-231.
    • Lippard, S.J., Shelton, A.W., Gass, I.G., 1986. The ophiolite of Northern Oman. In: Geological Society Memoir 11, Blackwell, Oxford 178pp.
    • Lissenberg, C.J., Dick, H.J.B., 2008. Melt-rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt. Earth and Planetary Science Letters 271, 311-325. doi: 10.1016/j.epsl.2008.04.023
    • Lissenberg, C.J., MacLeod, C.J., Howard, K.A., Godard, M., 2013. Pervasive reactive melt migration through fast-spreading lower oceanic crust (Hess Deep, equatorial Pacific Ocean). Earth and Planetary Science Letters 361, 436-447.
    • Lister, C.R.B., 1974. On the penetration of water into hot rocks. Geophysical Journal Of the Royal Astronomical Society, 39, 465-509.
    • MacLeod, C.J., Rothery, D.A., 1992. Ridge axial segmentation in the Oman ophiolite: evidence from along-strike variations in the sheeted dyke complex. In: Parson, L.M., Murton, B.J. and Browning, P., (eds.) Ophiolites and their Modern Oceanic Analogues. Special Publication of the Geological Society of London 60, 39-63.
    • MacLeod, C.J., Yaouancq, G., 2000. A fossil melt lens in the Oman ophiolite: Implications for magma chamber processes at fast spreading ridges. Earth and Planetary Science Letters 176, 357-373. doi: 10.1016/S0012-821X(00)00020-0
    • Marks, N., Schiffman, P., Zierenberg, R. A., 2011. High-grade contact metamorphism in the Reykjanes geothermal system: Implications for fluid-rock interactions at mid-oceanic ridge spreading centers. Geochemistry, Geophysics, Geosystems 12, Q08007. doi:10.1029/2011GC003569.
    • McDonald, I., Viljoen, K.S., 2006. Platinum-group element geochemistry of mantle eclogites: a reconnaissance study of xenoliths from the Orapa kimberlite, Botswana. Transactions of the Institution of Mining and Metallurgy, Section B: Applied Earth Science 115, 81-93.
    • Michael, P.J., Cornell, W.C., 1998. Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: Evidence from chlorine and major element chemistry of mid-ocean ridge basalts. Journal of Geophysical Research 103, 18 325-18 356.
    • Michael, P.J., Schilling, J.G., 1989. Chlorine in mid-ocean ridge magmas: evidence for assimilation of seawater influenced components. Geochimica et Cosmochimica Acta 53, 3 131-3 143.
    • Moreira, M., Blusztajn, J., Curtice, J., Hart, S., Dick, H., Kurz, M.D., 2003. He and Ne isotopes in oceanic crust: Implications for noble gas recycling in the mantle. Earth and Planetary Science Letters, 216, 635-643.
    • Morton, J.L., Sleep, N.H., 1985. Seismic reflections from a Lau basin magma chamber, in: Scholl DW, Vallier TL (Editors), Geology and offshore resources of pacific island arcs-Tonga region. Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, Houston, Texas, pp. 441-453.
    • Neo, N., Yamazaki, S., Miyashita, S., 2009. Data report: bulk rock compositions of samples from the IODP Expedition 309/312 sample pool, ODP Hole 1256D, in Teagle, D.A.H., Alt, J.C., Umino, S., Miyashita, S., Banerjee, N.R., Wilson, D.S., and the Expedition 309/312 Scientists, Proc. IODP, 309/312: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.309312.204.2009
    • Nicolas, A., Boudier, F., Koepke, J., France, L., Ildefonse, B., Mevel, C., 2008. Root zone of the sheeted dike complex in the Oman ophiolite. Geochemistry, Geophysics, Geosystems 9,Q05001. doi:10.1029/2007GC001918
    • Nicolas, A., Boudier, F., France, L., 2009. Subsidence in magma chamber and the development of magmatic foliation in Oman ophiolite gabbros. Earth and Planetary Science Letters 284, 76-87. doi: 10.1016/j.epsl.2009.04.012
    • O'Neill, H.St.C., Jenner, F.E., 2012. The global pattern of trace-element distributions in ocean floor basalts. Nature 491, 698-704. doi:10.1038/nature11678
    • Pallister, J.S., Knight, R.J., 1981. Rare-Earth Element Geochemistry of the Samail Ophiolite near Ibra, Oman. Journal of Geophysical Research 86-B4, 2673-2697.
    • Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R., Chenery, S.P., 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter 21, 115-144.
    • Pedersen, R.B., 1986. The nature and significance of magma chamber margins in ophiolites: examples from the Norwegian Caledonides. Earth and Planetary Science Letters 77, 100-112.
    • Pedersen, R.B., Malpas, J., 1984. The origin of oceanic plagiogranites from the Karmoy ophiolite, Western Norway. Contributions to Mineralogy and Petrology 88, 36-52.
    • Phipps Morgan, J., Chen, Y.J., 1993. The genesis of oceanic crust: magma injection, hydrothermal circulation and crustal flow. Journal of Geophysical Research 98, 6283-6297.
    • Pouchou, J.L., Pichoir, F., 1991. Quantitative analysis of homogeneous or stratified microvolumes applying the model ''PAP'', in: Heinrich, K.F.J., Newbury, D.E., (Eds.) Electron probe quantification, Plenum Press, New York, pp 31-75.
    • Quick, J.E., Denlinger, R.P., 1993. Ductile deformation and the origin of layered gabbro in ophiolites. Journal of Geophysical Research 98, 14015-14027.
    • Reed, W.P., 1992. Certificate of analysis, standard reference materials 610-611. (National Institute of Standard and Technology).
    • Rollinson, H., 2009. New models for the genesis of plagiogranites in the Oman Ophiolite. Lithos 112, 603-614. doi: 10.1016/j.lithos.2009.06.006
    • Rothery, D.A., 1983. The base of a sheeted dyke complex, Oman ophiolite: implications for magma chambers at oceanic spreading axes. Journal of the Geological Society of London 140, 287-296.
    • Rubin, K.H., Sinton, J.M., 2007. Inferences on mid-ocean ridge thermal and magmatic structure from MORB compositions. Earth and Planetary Science Letters 260: 257-276. doi: 10.1016/j.epsl.2007.05.035
    • Rubin, K.H., Sinton, J.M., Maclennan, J., Hellebrand, E., 2009. Magmatic filtering of mantle compositions at mid-ocean-ridge volcanoes. Nature Geoscience 2, 321-328.
    • Sano, T., Miyoshi, M., Ingle, S., Banerjee, N.R., Ishimoto, M., Fukuoka, T., 2008. Boron and chlorine contents of upper oceanic crust: Basement samples from IODP Hole 1256D. Geochemistry, Geophysics, Geosystems 9-12, Q12O15. doi:10.1029/2008GC002182
    • Shimizu, N., Hart, S.R., 1982. Application of the ion microprobe to geochemistry and cosmochemistry. Annual Review Of Earth and Planetary Sciences 10, 483-526.
    • Singh, S.C., Kent, G.M., Collier, J.S., Harding, A.J., Orcutt, J.A., 1998. Melt to mush variations in crustal magma properties along the ridge crest at the southern East Pacific Rise. Nature 394- 6696, 874-878.
    • Singh, S.C, Collier J.S, Harding, A.J, Kent G.M., Orcutt, J.A, 1999. Seismic evidence for a hydrothermal layer above the solid roof of the axial magma chamber at the southern East Pacific Rise. Geology 27-3, 219-222.
    • Sinton, J.M., Detrick, R.S., 1992. Mid-ocean ridge magma chambers. Journal of Geophysical Research 97, 197-216. doi:10.1029/91JB02508
    • Stix, J., Layne, G.D., 1996. Gas saturation and evolution of volatile and light lithophile elements in the Bandelier magma chamber between two caldera-forming eruptions. Journal of Geophysical Research 101, 25 181-25 196.
    • Sun, S.S, McDonough, W.F., 1989. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. Special Publications Geological Society London 42, 313-345.
    • Teagle, D.A.H., Alt, J.C., Umino, S., Miyashita, S., Banerjee, N.R., Wilson, D.S., the Expedition 309/312 Scientists, 2006. Proc. IODP, 309/312. Integrated Ocean Drilling Program Management International, Inc, Washington, DC, doi:10.2204/iodp.proc.309312.
    • Teagle, D.A.H., Ildefonse, B., Blum, A., Guérin, G., Zakharova, N., Abe, N., Abily, B., Adashi, Y., Alt, J.C., Anma, R., Baines, G., Deans, J., Dick, H., Endo, D., Ferré, E.C., France, L., Godard, M., Harris, M., Kim, Y., Koepke, J.H., Kurz, M.D., Lissenberg, C.J., Miyashita, S., Morris, A., Oizumi, R., Payot, B.D., Python, M., Roy, P., Till, J.L., Tominaga, M., Wilson, D.S., 2012. Proc. IODP, 335: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi: 10.2204/iodp.proc.335.2012.
    • Violay, M., Pezard, P.A., Ildefonse, B., Belghoul, A., Laverne, C., 2010. Petrophysical properties of the root zone of the sheeted dikes in the ocean crust: A case study from Hole ODP/IODP 1256D, Eastern Equatorial Pacific. Tectonophysics 493, 139-152.
    • Wanless, V.D., Shaw, A.M., 2012. Lower crustal crystallization and melt evolution at mid-ocean ridges. Nature Geoscience 5, 651-655. doi:10.1038/NGEO1552.
    • Wanless, V.D., Perfit, M.R., Ridley, W.I., Klein, E.E.E., 2010. Dacite petrogenesis on mid‐ocean ridges: Evidence for oceanic crustal melting and assimilation. Journal of Petrology 51, 2377- 2410. doi:10.1093/petrology/egq056.
    • Wanless, V.D., Perfit, M.R., Ridley, W.I., Wallace, P.J., Grimes, C.B., Klein, E.M., 2011. Volatile abundances and oxygen isotopes in basaltic to dacitic lavas on mid-ocean ridges: The role of assimilation at spreading centers. Chemical Geology 287, 1-2, 54-65.
    • Wanless, V.D., Perfit, M.R., Klein, E.M., White, S., Ridley, W.I., 2012. Reconciling geochemical and geophysical observations of magma supply and melt distribution at the 9°N overlapping spreading center, East Pacific Rise. Geochemistry, Geophysics, Geosystems 13-11, Q11005. doi:10.1029/2012GC004168.
    • Wilson, D.S., Teagle, D.A.H., Alt, J.C., Banerjee, N.R., Umino, S., Miyashita, S., Acton, G.D., Anma, R., Barr, S.R., Belghoul, A., Carlut, J., Christie, D.M., Coggon, R.M., Cooper, K.M., Cordier, C., Crispini, L., Durand, S.R., Einaudi, F., Galli, L., Gao, Y., Geldmacher, J., Gilbert, L.A., Hayman, N.W., Herrero-Bervera, E., Hirano, N., Holter, S., Ingle, S., Jiang, S., Kalberkamp, U., Kerneklian, M., Koepke, J., Laverne, C., Vasquez, H.L.L., Maclennan, J., Morgan, S., Neo, N., Nichols, H.J., Park, S.H., Reichow, M.K., Sakuyama, T., Sano, T., Sandwell, R., Scheibner, B., Smith-Duque, C.E., Swift, S.A., Tartarotti, P., Tikku, A.A., Tominaga, M., Veloso, E.A., Yamasaki, T., Yamazaki, S., Ziegler, C., 2006. Drilling to gabbro in intact ocean crust. Science 312, 1016-1020. doi: 10.1126/science.1126090
    • Yamazaki, S., Neo, N., Miyashita, S., 2009. Data report: whole-rock major and trace ele- ments and mineral compositions of the sheeted dike-gabbro transition in ODP Hole 1256D, in Teagle, D.A.H., Alt, J.C., Umino, S., Miyashita, S., Banerjee, N.R., Wilson, D.S., and the Expedition 309/312 Scientists, Proc. IODP, 309/312: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ iodp.proc.309312.203.2009
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article