Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Shenfield, Alex; Fleming, Peter (2014)
Publisher: Elsevier
Languages: English
Types: Article
Coupling conventional controller design methods, model based controller synthesis and simulation, and multi-objective evolutionary optimisation methods frequently results in an extremely computationally expensive design process. However, the emerging paradigm of grid computing provides a powerful platform for the solution of such problems by providing transparent access to large-scale distributed high-performance compute resources. As well as substantially speeding up the time taken to find a single controller design satisfying a set of performance requirements this grid-enabled design process allows a designer to effectively explore the solution space of potential candidate solutions. An example of this is in the multi-objective evolutionary design of robust controllers, where each candidate controller design has to be synthesised and the resulting performance of the compensated system evaluated by computer simulation. This paper introduces a grid-enabled framework for the multi-objective optimisation of computationally expensive problems which will then be demonstrated using and example of the multi-objective evolutionary design of a robust lateral stability controller for a real-world aircraft using H ∞ loop shaping.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baker, J. E., 1987. Reducing bias and inefficiency in the selection algorithm. In: Grefenstette, J. J. (Ed.), Proceedings of the Second International Conference on Genetic Algorithms. Lawrence Erlbaum., pp. 14-21.
    • Baker, M., Buyya, R., Laforenza, D., 2002. Grid and grid technologies for wide area distributed computing. Software: Practice and Experience 32 (15), 1437-1466.
    • Berman, F., Wolski, R., Figueira, S., Schopf, J., Shao, G., 1996. Application-level scheduling on distributed heterogeneous networks. In: Supercomputing '96.
    • Beyer, H. G., 1995. Toward a theory of evolution strategies: Selfadaptation. Evolutionary Computation 3 (3), 311 - 347.
    • Bullock, S., Cartlidge, J., Thompson, M., 2002. Prospects for computational steering in evolutionary computation. In: Bilotta, E., Groß, D., Smith, T., Lenaerts, T., Bullock, S., Lund, H. H., Bird, J., Watson, R., Pantano, P., Pagliarini, L., Abbass, H., Standish, R., Bedau, M. (Eds.), Artificial Life VIII Workshop Proceedings. MIT Press, pp. 131-137.
    • Cantu´-Paz, E., Goldberg, D. E., 1999. On the scalability of parallel genetic algorithms. Evolutionary Computation 7 (4), 429-449.
    • Capi, G., 2008. Evolution of efficient neural controllers for robot multiple task performance - a multiobjective approach. In: IEEE international conference on Robotics and Automation 2008. pp. 2195 -2200.
    • Chappell, D. A., Jewell, T., 2002. Java Web Services. O'Reilly.
    • Chipperfield, A. J., Fleming, P. J., 1995. Parallel genetic algorithms. In: Zomaya, A. Y. (Ed.), Parallel And Distributed Computing Handbook. McGraw-Hill, Ch. 39, pp. 1118-1144.
    • Deb, K., Zope, P., Jain, A., 2003. Distributed computing of pareto optimal solutions with evolutionary algorithms. In: Proceedings of the Second International Conference on Evolutionary MultiCriteria Optimisation (EMO2003). Springer-Verlag, pp. 534-549.
    • Farina, M., Amato, P., 2004. A fuzzy definition of “optimality” for many-criteria optimization problems. IEEE Transactions on System, Man and Cybernetics - Part A: Systems and Humans 34 (3), 315-326.
    • Fleming, P. J., Purshouse, R. C., 2002. Evolutionary algorithms in control systems engineering: a survey. Control Engineering Practice 10, 1223-1241.
    • Fleming, P. J., Purshouse, R. C., Lygoe, R. J., 2005. Many objective optimization: An engineering perspective. In: Coello, C. A. C., Aguirre, A. H., Zitzler, E. (Eds.), Proceedings of the International Conference on Evolutionary Multi-Objective Optimization (EMO2005). Vol. 3470 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, pp. 14-32.
    • Fogarty, T. C., Huang, R., 1991. Implementing the genetic algorithm on transputer based parallel processing systems. In: Schwefel, H.- P., M¨anner, R. (Eds.), Parallel Problem Solving from Nature 1. Vol. 496 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, pp. 145-149.
    • Fogel, D. B., Ghoziel, A., 1997. A note on representations and variation operators. IEEE Transactions on Evolutionary Computation 1 (2), 159-161.
    • Fonseca, C. M., Fleming, P. J., 1998. Multiobjective optimization and multiple constraint handling with evolutionary algorithms - Part I: A unified formulation. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 28 (1), 26-37.
    • Foster, I., Kesselman, C., 1999. The Globus Toolkit. In: Foster, I., Kesselman, C. (Eds.), The GRID: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, Ch. 11, pp. 259-278.
    • Foster, I., Kesselman, C., Nick, J. M., Tuecke, S., 2002. Grid services for distributed system integration. IEEE Computer 35 (6), 37 - 46.
    • Foster, I., Kesselman, C., Tuecke, S., 2001. The anatomy of the grid: Enabling scalable virtual organizations. International Journal of Supercomputer Applications 15 (3), 200-222.
    • Garcia, J. J. V., Garay, V. G., Gordo, E. I., Fano, F. A., Sukia, M. L., 2011. Intelligent multi-objective nonlinear model predictive control (iMO-NMPC): towards the on-line optimisation of highly complex control problems. Expert systems with applications 39 (7), 6527-6540.
    • Gembicki, F. W., 1974. Vector optimization for control with performance and parameter sensitive indices. Ph.D. thesis, Case Western Reserve University, Cleveland, Ohio.
    • Glover, K., Doyle, J. C., 1988. State-space formulae for all stabilizing controllers that satisfy an h∞ norm bound and relations to risk sensitivity. Systems and Control letters, 167-172.
    • Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley.
    • Griffin, I. A., Schroder, P., Chipperfield, A. J., Fleming, P. J., 2000. Multi-objective optimization approach to the alstom gasifier problem. Proceedings of the institute of mechanical engineers 214 (1), 453-468.
    • Grosso, P. B., 1985. Computer simulation of genetic adaptation: Parallel subcomponent interaction in a multilocus model. Ph.D. thesis, University of Michigan.
    • Hancock, P. J. B., April 1994. An empirical comparison of selection methods in evolutionary algorithms. In: Fogarty, T. C. (Ed.), Evolutionary Computing - AISB Workshop. Vol. 865 of Lecture Notes in Computer Science. Springer-Verlag, pp. 80-94.
    • Herrero, J. M., Blasco, X., Martinez, M., Sanchis, J., 2008. Multiobjective tuning of robust pid controllers using evolutionary algorithms. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G., Drechsler, R., Ekart, A., Esparcia-Alcazar, A., Farooq, M., Fink, A., McCormack, J., O'Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A., Yang, S. (Eds.), Applications of Evolutionary Computing. Vol. 4974. pp. 515-524.
    • Hiroyasu, T., Miki, M., Watanabe, S., 2000. The new model of parallel genetic algorithm in multi-objective optimization problems - divided range multi-objective genetic algorithm. In: Proceedings of the Congress on Evolutionary Computation (CEC) 2000.
    • Hwang, C.-L., Masud, A. S. M., 1979. Multiple Objective Decision Making - Methods and Applications. Vol. 164 of Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin.
    • Igel, C., Hansen, N., Roth, S., 2007. Covariance matrix adaptation for multi-objective optimization. Evolutionary Computation 15 (1), 1 - 28.
    • Kleinrock, L., 1975. Queueing Systems Volume 1: Theory. John Wiley & Sons.
    • Klienrock, L., 1969. UCLA press release. URL http://www.lk.cs.ucla.edu/LK/Bib/REPORT/press.html Lee, H.-J., Lee, J.-W., Lee, J.-O., 2009. Development of a web services based multidisciplinary design optimization framework. Advancess in Engineering Software 40 (3), 176-183.
    • McFarlane, D., Glover, K., 1990. Robust Controller Design Using Normalized Coprime Factor Plant Descriptions. Vol. 138 of Lecture Notes in Control and Information Sciences. Springer-Verlag.
    • Michalewicz, Z., Fogel, D. B., 2000. How to Solve It: Modern Heuristics. Springer.
    • Moshaiov, A., Ashram, A., 2009. Multi-objective evolution of robot neuro-controllers. In: IEEE congress on evolutionary computation (CEC) 2009. pp. 1093-1100.
    • Mu¨hlenbein, H., Schlierkamp-Voosen, D., 1993. Predictive models for the breeder genetic algorithm I: Continuous parameter optimization. Evolutionary Computation 1 (1), 25-49.
    • Nelson, R. C., 1998. Flight Stability and Automatic Control, 2nd Edition. McGraw-Hill.
    • Purshouse, R. C., 2003. On the evolutionary optimisation of many objectives. Ph.D. thesis, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK, S1 3JD.
    • Reynoso-Meza, G., Blasco, X., Sanchis, J., Herrero, J. M., 2013. Multiobjective evolutionary algorithms for multivariable pi controller design. Information Sciences 221, 124-141.
    • Reynoso-Meza, G., Sanchis, J., Blasco, X., Herrero, J. M., 2012. Comparison of design concepts in multi-criteria decision-making using level diagrams. Expert Systems with Applications 39 (9), 7895-7907.
    • Rivera, W., 2001. Scalable parallel genetic algorithms. Artificial Intelligence Review 16 (2), 153-168.
    • Rodriguez-Vazquez, K., Fonseca, C. M., Fleming, P. J., 2004. Identifying the structure of nonlinear dynamic systems using multiobjective genetic programming. IEEE transactions on systems, man, and cybenetics - part a: systems and humans 34 (4), 531-545.
    • Schott, J. R., 1995. Fault tolerant design using single and multicriteria genetic algorithm optimization. Master's thesis, Massachusetts Institute of Technology.
    • Shenfield, A., Fleming, P. J., 2013. A novel workload allocation strategy for batch jobs. International Journal of Computing and Network Technology 1, 1-17.
    • Shenfield, A., Fleming, P. J., Alkarouri, M., 2007. Computational steering of a multi-objective evolutionary algorithm for engineering design. Engineering Applications of Artificial Intelligence 20 (8), 1047-1057.
    • Shenfield, A., Fleming, P. J., Allan, J., Kadirkamanathan, V., 2010. Optimisation of maintenance scheduling strategies on the grid. Annals of Operations Research 180 (1), 213 - 231.
    • Skogestad, S., Postlethwaite, I., 1996. Multivariable feedback control - Analysis and Design. John Wiley & Sons.
    • Starkweather, T., Whitley, D., Mathias, K., 1991. Optimization using distributed genetic algorithms. In: Schwefel, H.-P., Ma¨nner, R. (Eds.), Parallel Problem Solving from Nature 1. Vol. 496 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, pp. 176-185.
    • Stewart, P., Stone, D. A., Fleming, P. J., 2004. Design of robust fuzzy-logic control systems by multi-objective evolutionary methods with hardware in the loop. Engineering applications of artifical intelligence 70 (3), 275-284.
    • Tan, K. C., Li, Y., 2002. Grey-box model identification via evolutionary computing. Control engineering practice 10, 673-684.
    • The White Rose University Consortium, 2012. The white rose grid website. Viewed 10 January 2012.
    • Van Veldhuizen, D. A., 1999. Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. Ph.D. thesis, Airforce Institute of Technology.
    • W3C Working Group, February 2004. Web services architecture. Viewed 18 October 2006.
    • URL http://www.w3c.org/TR/ws-arch
    • Wang, L., Li, L.-P., 2011. Fixed-structure h∞ controller synthesis based on differential evolution with level comparison. Evolutionary Computation, IEEE Transactions on 15 (1), 120-129.
    • Weng, W., Wang, P., Jin, X., Cao, Y., 2012. Design and application of a platform for cae-based optimization using a grid-based environment. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 226 (6), 1601-1611.
    • Zames, G., 1981. Feedback and optimal sensitivity: model reference transformations, multiplicitive seminorms, and approximate inverse. IEEE Transactions on Automatic Control 26 (2), 301-320.
    • Zhao, S.-Z., Iruthayarajan, M. W., Suganthan, P. N., 2011. Multi-objective robust pid controller tuning using two lbests multi-objective particle swarm optimisation. Information Sciences 181 (16), 3323-3335.
    • Zitzler, E., Thiele, L., 1998. Multiobjective optimization using evolutionary algorithms a comparative case study. In: Eiben, A. E., B¨ack, T., Schoenauer, M., Schwefel, H. P. (Eds.), Parallel Problem Solving from Nature. Springer, pp. 292-301.
    • Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., da Fonseca, V. G., 2003. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7 (2), 117-132.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article