Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; Davis, N.; Dicks, E.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B.A.; Cooper, C.; Shipley, J. ... view all 52 authors View less authors (2002)
Publisher: Nature Publications Group
Languages: English
Types: Article
Subjects: RC0254, RB
Cancers arise owing to the accumulation of mutations in critical genes that alter normal programmes of cell proliferation, differentiation and death. As the first stage of a systematic genome-wide screen for these genes, we have prioritized for analysis signalling pathways in which at least one gene is mutated in human cancer. The RAS RAF MEK ERK MAP kinase pathway mediates cellular responses to growth signals. RAS is mutated to an oncogenic form in about 15% of human cancer. The three RAF genes code for cytoplasmic serine/threonine kinases that are regulated by binding RAS. Here we report BRAF somatic missense mutations in 66% of malignant melanomas and at lower frequency in a wide range of human cancers. All mutations are within the kinase domain, with a single substitution (V599E) accounting for 80%. Mutated BRAF proteins have elevated kinase activity and are transforming in NIH3T3 cells. Furthermore, RAS function is not required for the growth of cancer cell lines with the V599E mutation. As BRAF is a serine/threonine kinase that is commonly activated by somatic point mutation in human cancer, it may provide new therapeutic opportunities in malignant melanoma.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allele Transformed foci per mg DNA Fold increase over wild-type BRAF ............................................................................................................................................................................. WTBRAF 1.3 - V599E 180 138 £ DAVE 0 - L596V 90 70 £ DALV 0 - G463V 130 100 £ GG1426VH8ARAS 129,0000 9,62900££ ............................................................................................................................................................................. NIH3T3 cells were transfected as described in Methods. Transformed foci contained cells like Rasor Raf1-transformed cells-which are refractile and frequently bipolar-and often contained the giant cells typical of RAS or RAF1 transformation. DAVE and DALV are kinase-inactive versions of V599E and L596V, respectively, in which D593 of the conserved DFG motif is replaced by alanine to generate a kinase-dead variant.
    • 1. Peyssonnaux, C. & Eyche`ne, A. The Raf/MEK/ERK pathway: new concepts of activation. Biol. Cell 93, 53-62 (2001).
    • 2. Avruch, J. A. et al. Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog. Horm. Res. 56, 127-155 (2001).
    • 3. Kolch, W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J. 351, 289-305 (2000).
    • 4. Vogelstein, B. et al. Genetic alterations during colorectal-tumour development. N. Engl. J. Med. 319, 525-532 (1988).
    • 5. van't Veer, L. J. et al. N-ras mutations in human cutaneous melanoma from sun-exposed body sites. Mol. Cell Biol. 9, 3114-3116 (1989).
    • 6. Caduff, R. F., Svoboda-Newman, S. M., Ferguson, A. W., Johnston, C. M. & Frank, T. S. Comparison of mutations of Ki-RAS and p53 immunoreactivity in borderline and malignant epithelial ovarian tumours. Am. J. Surg. Pathol. 23, 323-328 (1999).
    • 7. Daya-Grosjean, L., Dumaz, N. & Sarasin, A. The specificity of p53 mutation spectra in sunlight induced human cancers. J. Photochem. Photobiol. B 28, 115-124 (1995).
    • 8. Halaban, R. The regulation of normal melancyte proliferation. Pigment Cell Res. 13, 4-14 (2000).
    • 9. Busca, R. et al. Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J. 19, 2900-2910 (2000).
    • 10. Johnson, L. N., Lowe, E. D., Noble, M. E. & Owen, D. J. The Eleventh Datta Lecture. The structural basis for substrate recognition and control by protein kinases. FEBS Lett. 430, 1-11 (1998).
    • 11. Hemmer, W., McGlone, M., Tsigelny, I. & Taylor, S. S. Role of the glycine triad in the ATP-binding site of cAMP-dependent protein kinase. J. Biol. Chem. 272, 16946-16954 (1997).
    • 12. Grant, B. D., Hemmer, W., Tsigelny, I., Adams, J. A. & Taylor, S. S. Kinetic analyses of mutations in the glycine-rich loop of cAMP-dependent protein kinase. Biochemistry 37, 7708-7715 (1998).
    • 13. Odawara, M. et al. Human diabetes associated with a mutation in the tyrosine kinase domain of the insulin receptor. Science 245, 66-68 (1989).
    • 14. Cooke, M. P. & Perlmutter, R. M. Expression of a novel form of the fyn proto-oncogene in hematopoietic cells. New Biol. 1, 66-74 (1989).
    • 15. Mason, C. S. et al. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 18, 2137-2148 (1999).
    • 16. Marais, R., Light, Y., Paterson, H. F., Mason, C. S. & Marshall, C. J. Differential regulation of Raf-1, ARaf, and B-Raf by oncogenic ras and tyrosine kinases. J. Biol. Chem. 272, 4378-4383 (1997).
    • 17. Zhang, B. H. & Guan, K. L. Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. EMBO J. 19, 5429-5439 (2000).
    • 18. Vojtek, A. B. & Der, C. J. Increasing complexity of the Ras signalling pathway. J. Biol. Chem. 273, 19925-19928 (1998).
    • 19. Mulcahy, L. S., Smith, M. R. & Stacey, D. W. Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells. Nature 313, 241-243 (1985).
    • 20. Stacey, D. W., DeGudicibus, S. R. & Smith, M. R. Cellular ras activity and tumour cell proliferation. Exp. Cell Res. 171, 232-242 (1987).
    • 21. Favata, M. F. et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273, 18623-18632 (1998).
    • 22. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukaemia. N. Engl. J. Med. 344, 1031-1037 (2001).
    • 23. Rozycka, M., Collin, N., Stratton, M. R. & Wooster, R. Rapid detection of DNA sequence variants by conformation sensitive capillary electrophoresis. Genomics 70, 34-40 (2000).
    • 24. Mittnacht, S., Paterson, H., Olson, M. F. & Marshall, C. J. Ras signalling is required for inactivation of the tumour suppressor pRb cell-cycle control protein. Curr. Biol. 7, 219-221 (1997).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • WT

Cite this article