LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Leslie, Laura J.; Marshall, Lindsay J.; Devitt, Andrew; Hilton, Andrew; Tansley, Geoff D. (2013)
Languages: English
Types: Article
Subjects:
Cell exclusion is the phenomenon whereby the hematocrit and viscosity of blood decrease in areas of high stress. While this is well known in naturally occurring Poiseuille flow in the human body, it has never previously been shown in Couette flow, which occurs in implantable devices including blood pumps. The high-shear stresses that occur in the gap between the boundaries in Couette flow are known to cause hemolysis in erythrocytes. We propose to mitigate this damage by initiating cell exclusion through the use of a spiral-groove bearing (SGB) that will provide escape routes by which the cells may separate themselves from the plasma and the high stresses in the gap. The force between two bearings (one being the SGB) in Couette flow was measured. Stained erythrocytes, along with silver spheres of similar diameter to erythrocytes, were visualized across a transparent SGB at various gap heights. A reduction in the force across the bearing for human blood, compared with fluids of comparable viscosity, was found. This indicates a reduction in the viscosity of the fluid across the bearing due to a lowered hematocrit because of cell exclusion. The corresponding images clearly show both cells and spheres being excluded from the gap by entering the grooves. This is the first time the phenomenon of cell exclusion has been shown in Couette flow. It not only furthers our understanding of how blood responds to different flows but could also lead to improvements in the future design of medical devices.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1.  Palmer AA. Axial drift of cells and partial plasma skimming in blood flowing through glass slits.  American Journal of Physiology ‐‐ Legacy Content. 1965;209(6):1115‐22.  Fujiwara H, Ishikawa T, Lima R, Matsuki N, Imai Y, Kaji H, et al. Red blood cell motions in highhematocrit  blood  flowing  through  a  stenosed  microchannel.  Journal  of  Biomechanics.  2009;42(7):838‐43. 
    • Sugii Y, Okuda R, Okamoto K, Madarame H. Velocity measurement of both red blood cells and  plasma of in vitro blood flow using high‐speed micro PIV technique. Measurement Science and  Technology. 2005;16(5):1126. 
    • Vidakovic S, Ayre P, Woodard J, Lingard N, Tansley G, Reizes J. Paradoxical Effects of Viscosity  on the VentrAssist Rotary Blood Pump. Artificial Organs. 2000;24(6):478‐82.  Sutera S. Flow‐induced trauma to blood cells. Circ Res. 1977;41(1):2‐8.  Kawahito K, Nose Y. Hemolysis in different centrifugal pumps. Artif Organs. 1997;21(4):323‐6.  Patrick M, Chen C‐Y, Frakes D, Dur O, Pekkan K. Cellular‐level near‐wall unsteadiness of highhematocrit erythrocyte flow using confocal μPIV. Experiments in Fluids. 2011;50(4):887‐904.  James NL, Wilkinson CM, Lingard NL, Meer ALvd, Woodard JC. Evaluation of Hemolysis in the  VentrAssist Implantable Rotary Blood Pump. Artificial Organs. 2003;27(1):108‐13.  Watanabe  N,  Arakawa  Y,  Sou  A,  Kataoka  H,  Ohuchi  K,  Fujimoto  T,  et  al.  Deformability  of  human red blood cells exposed to a uniform shear stress as measured by a cyclically reversing  shear flow generator. Physiol Meas. 2007;28(5):531‐45. 
    • Nanjappa BN, Chang H‐K, Glomski CA. Trauma of the Erythrocyte Membrane Associated with  Low Shear Stress. Biophysical Journal. 1973;13(11):1212‐22.  Leverett LB, Hellums JD, Alfrey CP, Lynch EC. Red blood cell damage by shear stress. Biophys J.  1972;12(3):257‐73. 
    • Paul R, Apel J, Klaus S, Schügner F, Schwindke P, Reul H. Shear Stress Related Blood Damage in  Laminar Couette Flow. Artificial Organs. 2003;27(6):517‐29.  Lee SS, Antaki JF, Kameneva MV, Dobbe JG, Hardeman MR, Ahn KH, et al. Strain Hardening of  Red  Blood  Cells  by  Accumulated  Cyclic  Supraphysiological  Stress.  Artificial  Organs.  2007;31(1):80‐6. 
    • Muijderman EA. Spiral groove bearings library Pt, editor. New York: Springer‐Verlag; 1966. 199  p. 
    • Zou  Q,  Tian  Y,  Liu  X,  Wen  S,  Barber  GC.  Study  of  Flow  Characteristics  of  Lubricant  in  SpiralGroove Bearings by the Fluorescent Method. Tribology Transactions. 2005;48(2):259 ‐ 63.  Kink  T,  Reul  H.  Concept  for  a  new  hydrodynamic  blood  bearing  for  miniature  blood  pumps.  Artificial Organs. 2004;28(10):916‐20. 
    • Lowe  G,  Fowkes  F,  Dawes  J,  Donnan  P,  Lennie  S,  Housley  E.  Blood  viscosity,  fibrinogen,  and  activation  of  coagulation  and  leukocytes  in  peripheral  arterial  disease  and  the  normal  population in the Edinburgh Artery Study. Circulation. 1993;87(6):1915‐20.  Wells  RE,  Jr.,  Merrill  EW.  Influence  of  flow  properties  of  blood  upon  viscosity‐hematocrit  relationships. J Clin Invest. 1962;41:1591‐8. 
    • Wells  RE,  Merrill  EW.  Shear  Rate  Dependence  of  the  Viscosity  of  Whole  Blood  and  Plasma.  Science. 1961;133(3455):763‐4. 
    • Chien  S.  Shear  Dependence  of  Effective  Cell  Volume  as  a  Determinant  of  Blood  Viscosity.  Science. 1970;168(3934):977‐9. 
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article