Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bukner, S.; Dialami, F.; Ding, L.; Matthews, J. (2015)
Publisher: IACSIT Press
Languages: English
Types: Article
A potential technique to reduce the energy required to actuate moving parts in a machine is to reduce their mass. This paper presents initial research attempting to answer this question for robotic arm application using a biologically inspired approach. Investigation identified some potential biological solutions for tubular structures. From analysis of the properties of these biological models, the physical principles were deduced and abstracted into computer-aided design models for testing using finite element analysis. Three of the best performing design solutions were manufactured and physically tested. Findings showed that the biomimetic structures reached at least the same efficiency of conventional tubular structures regarding the ratio of maximum load and weight.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] T. Speck and C. Neinhuis, Naturwissenschaftliche Rundschau, 2004, pp. 177-184.
    • [2] J. Matthews, C. Parr, O Araoye, and M. M. Manus, “Environmental auditing of a packaging system for redesign: a case study exploration,” Journal of Clean Energy Technologies, vol. 2, no. 3, pp. 267-273, 2013.
    • [3] W. Nachtigall, Bionik - Grundlagen und Beispiele für Ingenieure und Naturwissenschaftler, Berlin: Springer Verlag, 2002.
    • [4] J. Matthews, L. L. Ding, J. Feldman, and G. Mullineux, “The maintenance and handling of constraints in machine design,” in Proc. the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference New York: 2009, pp. 443-452.
    • [5] L. H. Shu, K. Ueda, I. I. Chiu, and H. Cheong, “Biologically inspired design,” CIRP Annals - Manufacturing Technology, vol. 60, no. 2, pp 673-693, 2011.
    • [6] J. Weaver, J, Aizenberg, G, Fantner, D, Kisailus, A, Woesz, and P. Allen, “Hierarchicalassembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum,” Journal. of Structural. Biology, vol. 158, pp. 93-106, 2007.
    • [7] M. Milwich, T. Speck, T. Stegmaier, and H. Planck, “Biomimetics and Technical Textiles: Solving engineering problems with the help of nature's wisdom,” American Journal. Of Botany, vol. 93, no. 10, pp. 1455-1465, 2006.
    • [8] F. Malik, Werner Testlabor Natur, Faszination Natur, München: Bionik Media GmbH, 2006.
    • [9] VDI 2225 Evaluation System, “Technisch-wirtchaftiliches Konstruieren, VDI-Vertag, Dusseldorf, 1977.
    • [10] B. Klein, Leichtbau-Konstruktion: Berechnung sgrundlagenund Gestaltung, Wiesbaden: Vieweg+Teubner Verlag, Auflage, 2011, pp. 33-35.
    • [11] C. Hamm, Das Leben Im Plankton, Faszination Bionik. München: Malik Management Zentrum St. Gallen, 2006.
    • [12] K. G. Blüchel, Faszination Bionik, München: Malik Management Zentrum St. Gallen, 2008
    • [13] C. Gebhard, FEM mit ANSYS und Workbench, Einführung in die lineare undnichtlineare Mechanik, München: Carl Hanser Verlag, 2011.
    • [14] J. Blömer, J. Gerken, H. Flötotto, A. Bernotat, R. Jaeger, and T. Rechtenwald, Bionic Manufacturing, Bundesministerium für Bildung und Forschung. 2012.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article