Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Chapman, Stephanie; Brookes, Catherine; Bowker, Michael; Gibson, Emma K.; Wells, Peter (2016)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects: QD
The performance of Mo-enriched, bulk ferric molybdate, employed commercially for the industrially important reaction of the selective oxidation of methanol to formaldehyde, is limited by a low surface area, typically 5-8 m(2) g(-1). Recent advances in the understanding of the iron molybdate catalyst have focused on the study of MoOx@Fe2O3 (MoOx shell, Fe2O3 core) systems, where only a few overlayers of Mo are present on the surface. This method of preparing MoOx@Fe2O3 catalysts was shown to support an iron molybdate surface of higher surface area than the industrially-favoured bulk phase. In this research, a MoOx@Fe2O3 catalyst of even higher surface area was stabilised by modifying a haematite support containing 5 wt% Al dopant. The addition of Al was an important factor for stabilising the haematite surface area and resulted in an iron molybdate surface area of ?35 m(2) g(-1), around a 5 fold increase on the bulk catalyst. XPS confirmed Mo surface-enrichment, whilst Mo XANES resolved an amorphous MoOx surface monolayer supported on a sublayer of Fe2(MoO4)3 that became increasingly extensive with initial Mo surface loading. The high surface area MoOx@Fe2O3 catalyst proved amenable to bulk characterisation techniques; contributions from Fe2(MoO4)3 were detectable by Raman, XAFS, ATR-IR and XRD spectroscopies. The temperature-programmed pulsed flow reaction of methanol showed that this novel, high surface area catalyst (3ML-HSA) outperformed the undoped analogue (3ML-ISA), and a peak yield of 94% formaldehyde was obtained at ?40 °C below that for the bulk Fe2(MoO4)3 phase. This work demonstrates how core-shell, multi-component oxides offer new routes for improving catalytic performance and understanding catalytic activity.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 W. J. Linn and A. W. Sleight, J. Catal., 1976, 41, 134-139.
    • 2 J. L. Callahan, R. K. Grasselli, E. C. Milberger and H. A. Strecker, Ind. Eng. Chem. Prod. Res. Dev., 1970, 9, 134-142.
    • 3 S. Kowatsch, Formaldehyde, Springer, Berlin Heidelberg, 2010.
    • 4 G. W. Keulks, J. Catal., 1970, 19, 232-235.
    • 5 U. Chowdhry, A. Ferretti, L. E. Firment, C. J. Machiels, F. Ohuchi, A. W. Sleight and R. H. Staley, Appl. Surf. Sci., 1984, 19, 360-372.
    • 6 M. Bowker, R. Holroyd, A. Elliott, P. Morrall, A. Alouche, C. Entwistle and A. Toerncrona, Catal. Lett., 2002, 83, 165-176.
    • 7 M. Bowker, C. Brookes, A. F. Carley, M. P. House, M. Kosif, G. Sankar, I. Wawata, P. P. Wells and P. Yaseneva, Phys. Chem. Chem. Phys., 2013, 15, 12056-12067.
    • 8 C. Brookes, P. P. Wells, G. Cibin, N. Dimitratos, W. Jones, D. J. Morgan and M. Bowker, ACS Catal., 2014, 4, 243-250.
    • 9 C. Brookes, P. P. Wells, N. Dimitratos, W. Jones, E. K. Gibson, D. J. Morgan, G. Cibin, C. Nicklin, D. Mora-Fonz, D. O. Scanlon, C. R. A. Catlow and M. Bowker, J. Phys. Chem. C, 2014, 26155-26161.
    • 10 Y. Huang, L. Cong, J. Yu, P. Eloy and P. Ruiz, J. Mol. Catal. A: Chem., 2009, 302, 48-53.
    • 11 K. Routray, W. Zhou, C. J. Kiely, W. Gru¨nert and I. E. Wachs, J. Catal., 2010, 275, 84-98.
    • 12 M. R. Sun-Kou, S. Mendioroz, J. L. G. Fierro, J. M. Palacios and A. GuerreroRuiz, J. Mater. Sci., 1995, 30, 496-503.
    • 13 Y. Matsuoka, M. Niwa and Y. Murakami, J. Phys. Chem., 1990, 94, 1477-1482.
    • 14 C. J. Machiels, W. H. Cheng, U. Chowdhry, W. E. Farneth, F. Hong, E. M. Mc Carron and A. W. Sleight, Appl. Catal., 1986, 25, 249-256.
    • 15 C. Brookes, M. Bowker, E. K. Gibson, D. Gianolio, K. M. H. Mohammed, S. Parry, S. M. Rogers, I. P. Silverwood and P. P. Wells, Catal. Sci. Technol., 2016, 722-730.
    • 16 Y. Zheng, Y. Cheng, Y. Wang, F. Bao, L. Zhou, X. Wei, Y. Zhang and Q. Zheng, J. Phys. Chem. B, 2006, 110, 3093-3097.
    • 17 K. Sivula, F. le Formal and M. Gr¨atzel, ChemSusChem, 2011, 4, 432-449.
    • 18 A. Khelfa, V. Sharypov, G. Finqueneisel and J. V. Weber, J. Anal. Appl. Pyrolysis, 2009, 84, 84-88.
    • 19 G. Picasso Escobar, A. Quintilla Beroy, M. P. Pina Iritia and J. Herguido Huerta, Chem. Eng. J., 2004, 102, 107-117.
    • 20 R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Wiley, 2006.
    • 21 M. Hermanek, R. Zboril, I. Medrik, J. Pechousek and C. Gregor, J. Am. Chem. Soc., 2007, 129, 10929-10936.
    • 22 U. Schwertmann, R. Fitzpatrick, R. Taylor and D. Lewis, Clays Clay Miner., 1979, 27, 105-112.
    • 23 A. Zoppi, C. Lofrumento, E. M. Castellucci and P. Sciau, J. Raman Spectrosc., 2008, 39, 40-46.
    • 24 U. Schwertmann and R. M. Cornell, Iron Oxides in the Laboratory, Wiley, 2008.
    • 25 M. P. House, A. F. Carley, R. Echeverria-Valda and M. Bowker, J. Phys. Chem. C, 2008, 112, 4333-4341.
    • 26 R. Li, Q. Li, S. Gao and J. K. Shang, J. Am. Ceram. Soc., 2011, 94, 584-591.
    • 27 M. Wells, R. Gilkes and R. Anand, Clay Miner., 1989, 24, 513-530.
    • 28 R. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, 32, 751-767.
    • 29 L. Truffault, B. Choquenet, K. Konstantinov, T. Devers, C. Couteau and L. J. M. Coiffard, J. Nanosci. Nanotechnol., 2011, 11, 2413-2420.
    • 30 H. Liu, T. Chen, X. Zou, C. Qing and R. L. Frost, J. Raman Spectrosc., 2013, 44, 1609-1614.
    • 31 D. L. A. de Faria, S. Venˆancio Silva and M. T. de Oliveira, J. Raman Spectrosc., 1997, 28, 873-878.
    • 32 M. Hanesch, Geophys. J. Int., 2009, 177, 941-948.
    • 33 P. A. Redhead, Vacuum, 1962, 12, 203-211.
    • 34 R. L. Blake, R. E. Hessevic, T. Zoltai and L. W. Finger, Am. Mineral., 1966, 51, 123.
    • 35 A. P. V. Soares, M. F. Portela and A. Kiennemann, Catal. Rev.: Sci. Eng., 2005, 47, 125-174.
    • 36 M. P. House, M. D. Shannon and M. Bowker, Catal. Lett., 2008, 122, 210-213.
    • 37 W. McMaster, N. K. Del Grande, J. Mallett and J. Hubbell, International Tables for Crystallography, Mathematical, Physical and Chemical Tables, Compilation of X-Ray cross sections, Section III, Springer Science & Business Media, 1969.
    • 38 A. M. Beale, S. D. M. Jacques, E. Sacaliuc-Parvalescu, M. G. O'Brien, P. Barnes and B. M. Weckhuysen, Appl. Catal., A, 2009, 363, 143-152.
    • 39 A. M. Turek, I. E. Wachs and E. DeCanio, J. Phys. Chem., 1992, 96, 5000-5007.
    • 40 L. J. Burcham, L. E. Briand and I. E. Wachs, Langmuir, 2001, 17, 6164-6174.
    • 41 G. Busca, Catal. Today, 1996, 27, 457-496.
    • 42 L. J. Burcham, L. E. Briand and I. E. Wachs, Langmuir, 2001, 17, 6175-6184.
    • 43 M. P. House, Selective oxidation of methanol over iron molybdate catalysts, PhD Thesis, Cardiff University, 2007.
    • 44 K. Manseri, H. Hentit, E. H. Elandaloussi, B. Benaichouba and M. S. Ouali, Hyperne Interact., 2010, 198, 243-257.
    • 45 B. Benaichouba, P. Bussiere and J. C. Vedrine, Appl. Catal., A, 1995, 130, 31-45.
    • 46 A. S. Chellappa and D. S. Viswanath, Ind. Eng. Chem. Res., 1995, 34, 1933-1940.
    • 47 K. L. Madhok and K. P. Srivastava, Proc. - Indian Acad. Sci., Chem. Sci., 1981, 90, 527-535.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article