Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Dawber, C. F.; Tripati, A. K. (2012)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: sub-01, Environmental pollution, GE1-350, TD172-193.5, Environmental sciences, Environmental protection, TD169-171.8
Culturing studies and empirically based core top calibrations have been used to infer that elemental ratios in benthic foraminifera can be used as proxies to reconstruct past variations in bottom water temperature and saturation state (Δ [CO32−]). However the mechanisms linking elemental ratios to these parameters are poorly constrained. Here, we explore the environmental parameters influencing the incorporation of B, Li, Sr and Mg in Oridorsalis umbonatus in early Cenozoic sediments from Ocean Drilling Program Site 1209. We investigate the influence of middle Eocene variations in intermediate water Δ [CO32−] using relationships developed from core top samples. The fidelity of bottom water Δ[CO32−] reconstructions based on single element ratios is assessed by comparing the X/Ca-based reconstructions to each other and to carbon cycle proxy records (benthic foraminifera δ13C, organic carbon content, foraminifera dissolution indices), and a seawater δ18O reconstruction for Site 1209. Discrepancies in the reconstructed Δ[CO32−] values based on these different metal ratios suggest that there are still gaps in our understanding of the parameters influencing X/Ca and demonstrate that caution is required when interpreting palaeo-reconstructions that are derived from a single elemental ratio. The downcore record of O. umbonatus Mg/Ca does not exhibit any similarities with the Li/Ca, B/Ca and Sr/Ca records, suggesting that the environmental parameters influencing Mg/Ca may be different for this species, consistent with temperature as the strongest control on this elemental ratio. This hypothesis is supported by the coefficients of multiple linear regression models on published Mg/Ca data. An incomplete understanding of the controls on elemental incorporation into benthic foraminifera hinders our ability to confidently quantify changes in saturation state using single X/Ca reconstructions over a range of timescales.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Archer, D. E.: Equatorial Pacific calcite preservation cycles: production or dissolution, Paleoceanography, 65, 561-571, 1991.
    • Archer, D., Emerson, S., and Reimers, C.: Dissolution of calcite in deep-sea sediments: pH and O2 microelectrode results, Geochim. Cosmochim. Ac., 53, 2831-2845, doi:10.1016/0016- 7037(89)90161-0, 1989.
    • Balter, V., Le´cuyer, C., and Barrat, J. A.: Reconstructing seawater Sr/Ca during the last 70 My using fossil fish tooth enamel, Palaeogeogr. Palaeocl., 310, 133-138, doi:10.1016/j.palaeo.2011.02.024, 2011.
    • Barker S., Greaves, M., and Elderfield, H.: A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry, Geochem. Geophys. Geosyst, 4, 8407, doi:10.1029/2003GC000559, 2003.
    • Billups, K. and Schrag, D.: Application of benthic foraminiferal Mg/Ca ratios to questions of Cenozoic climate change, Earth Planet. Sc. Lett., 209, 181-195, 2003.
    • Bohaty, S. M., Zachos, J. C., Florindo, F., and Delaney, M.: Coupled greenhouse warming and deep-sea acidification in the middle Eocene, Paleoceanography, 24, PA2207, doi:10.1029/2008PA001676, 2009.
    • Bralower, T.: Data report: Paleocene-early Oligocene calcareous nannofossil biostratigraphy, ODP Leg 198 Sites 1209, 1210, and 1211 Shatsky Rise, Pacific Ocean, Proceedings of the Ocean Drilling Program: Scientific Results, 198, 2005.
    • Broecker, W. S. and Peng, T. H.: Tracers in the Sea, Eldigio Press, 1982.
    • Brown, R. E., Anderson, L. D., Thomas, E., and Zachos, J. C.: A core-top calibration of B/Ca in the benthic foraminifers Nuttallides umbonifera and Oridorsalis umbonatus: A proxy for Cenozoic bottom water carbonate saturation, Earth Planet. Sc. Lett., 310, 360-368, doi:10.1016/j.epsl.2011.08.023, 2011.
    • Browning, J., Miller, K., and Pak, D.: Global implications of lower to middle Eocene sequence boundaries on the New Jersey coastal plain: The icehouse cometh, Geology, 247, 639-642, 1996.
    • Bryan, S. P. and Marchitto, T. M.: Mg/Ca-temperature proxy in benthic foraminifera: New calibrations from the Florida Straits and a hypothesis regarding Mg/Li, Paleoceanography, 232, PA2220, doi:10.1029/2007PA001553, 2008.
    • Coggon, R. M., Teagle, D. A. H., Smith-Duque, C. E., Alt, J. C., and Cooper, M. J.: Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank calcium carbonate veins, Science, 327, 1114-1117, 2010.
    • Corliss, B. H.: Microhabitats of benthic foraminifera within deepsea sediments, Nature, 314, 435-438, 1985.
    • Coxall, H. K. and Wilson, P. A.: Early Oligocene glaciation and productivity in the eastern equatorial Pacific: Insights into global carbon cycling, Paleoceanography, 26, PA2221, doi:10.1029/2010PA002021, 2011.
    • Coxall, H. K., Wilson, P. A., Palike, H., Lear, C. H., and Backman, J.: Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean, Nature, 433, 53-57, 2005.
    • Dawber, C. F. and Tripati, A.: Constraints on glaciation in the middle Eocene 46-37 Ma from Ocean Drilling Program ODP Site 1209 in the tropical Pacific Ocean, Paleoceanography, 26, PA2208, doi:10.1029/2010PA002037, 2011.
    • Dawber, C. F. and Tripati, A.: Relationships between bottom water carbonate saturation and element/Ca ratios in coretop samples of the benthic foraminifera Oridorsalis umbonatus, Biogeosciences, 9, 3029-3045, doi:10.5194/bg-9-3029-2012, 2012.
    • Dawber, C. F., Tripati, A., Gale, A., MacNiocaill, C., and Hesselbo, S.: Glacioeustasy during the middle Eocene? Insights from the stratigraphy of the Hampshire Basin, UK, Palaeogeogr. Palaeoclim., 300, 84-100, 2011.
    • DeConto, R. and Pollard, D.: Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2, Nature, 421, 245- 249, 2003.
    • DeConto, R., Pollard, D., Wilson, P. A., Palike, H., Lear, C. H., and Pagani, M.: Thresholds for Cenozoic bipolar glaciation, Nature, 455, 652-656, 2008.
    • de Villiers, S., Greaves, M., and Elderfield, H.: An intensity ratio calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP-AES, Geochem. Geophys. Geosys., 3, 1525-2027, 2002.
    • Dutton, A., Lohmann, K. C., and Leckie, R. M.: Insights from the Paleogene tropical Pacific: Foraminiferal stable isotope and elemental results from Site 1209, Shatsky Rise, Paleoceanography, 20, PA3004, doi:10.1029/2004PA001098, 2005.
    • Edgar, K. M., Wilson, P. A., Sexton, P. F., and Suganuma Y.: No extreme bipolar glaciation during the main Eocene calcite compensation shift, Nature, 448, 908-911, 2007.
    • Ekart, D. D., Cerling, T. E., Montan˜ez, I. P., and Tabor, N. J.: A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatmospheric carbon dioxide, Am. J. Sci., 299, 805-827, 1999.
    • Elderfield, H., Yu, J., Anand, P., Kiefer, T., and Nyland, B.: Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis, Earth Planet. Sc. Lett., 250, 633-649, doi:10.1016/j.epsl.2006.07.041, 2006.
    • Emerson, S. and Bender, M.: Carbon fluxes at the sediment-water interface of the deep-sea: Calcium carbonate preservation, J. Mar. Res, 391, 139-162, 1981.
    • Erez, J.: The Source of Ions for Biomineralization in Foraminifera and Their Implications for Paleoceanographic Proxies, Rev. Mineral. Geochem., 541, 115-149, 2003.
    • Erez, J., Bentov, S., Tishler, C., and Szafranek, D.: Intracellular calcium storage and the calcification mechanism of perforate foraminifera (abstract), Paleo. Bios., 16, p. 30, 1994.
    • Fantle, M. S. and DePaolo, D. J.: Variations in the marine Ca cycle over the past 20 million years, Earth Planet. Sc. Lett., 2371-2372, 102-117, 2005.
    • Freeman, K. and Hayes, J.: Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels, Global Biogeochem. Cy., 62, 185-198, 1992.
    • Gaetani, G. and Cohen, A.: Element partitioning during precipitation of aragonite from seawater: A framework for understanding paleoproxies, Geochem. Cosmochim. Ac., 70, 4617-4634, 2006.
    • Gaetani, G., Cohen, A., Wang, Z., and Crusius, J.: Rayleigh-based, multi-element coral thermometry: A biomineralization approach to developing climate proxies, Geochem. Cosmochim. Ac., 75, 1920-1932, 2011.
    • Griffith, E. M., Paytan, A., Caldeira, K., Bullen, T. D., and Thomas, E.: A Dynamic Marine Calcium Cycle During the Past 28 Million Years, Science, 322, 1671, doi:10.1126/science.1163614, 2008.
    • Gross, O.: Influence of temperature, oxygen and food availability on the migrational activity of bathyal benthic foraminifera: evidence by microcosm experiments, Hydrobiologia, 4261, 123- 137, 2000.
    • Hall, J. M. and Chan, L. H.: Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, latitudinal, and glacial-interglacial variation, Geochim. Cosmochim. Ac., 683, 529-545, 2004.
    • Hancock, H. J. L. and Dickens, G. R.: Carbonate Dissolution Episodes in Paleocene and Eocene sediment, Shatsky Rise, WestCentral Pacific, in: Proceedings of the Ocean Drilling Program, Scientific Results , 198, 2005.
    • Healey, S. L., Thunell, R. C., and Corliss, B. H.: 2008 The Mg/Catemperature relationship of benthic foraminiferal calcite: New core-top calibrations in the < 4 ◦C temperature range, Earth Planet. Sc. Lett., 2723-2724, 523-530, 2008.
    • Heiri, O., Lotter, A. F., and Lemcke, G.: Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results, J. Paleolimnol., 251, 101-110, 2001.
    • Horita, J., Zimmerman, H., and Holland, H.: Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporates, Geochim. Cosmochim. Ac., 66, 3733-3756, 2002.
    • Kurschner, W. M., Wagner, F., Dilcher, D. L., and Visscher, H.: Using fossil leaves for the reconstruction of Cenozoic paleoatmospheric CO2 concentrations, in: Geological Perspectives of Global Climate Change, edited by: Gerhard, L. C., Harrison, W. E., and Hanson, B. M., APPG Stud. Geol., 47, 169-189, 2001.
    • Lear, C. and Rosenthal, Y.: Benthic foraminiferal Li/Ca: Insights into Cenozoic seawater carbonate saturation state, Geology, 3411, 985-988, 2006.
    • Lear, C. H., Elderfield, H., and Wilson, P.: Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminferal calcite, Science, 287, 269-272, 2000.
    • Lear, C. H., Rosenthal, Y., and Slowey, N.: Benthic foraminiferal Mg/Ca-paleothermometry: A revised core-top calibration, Geochim. Cosmochim. Ac., 6619, 3375-3387, 2002.
    • Lear, C. H., Elderfield, H., and Wilson, P.: A Cenozoic seawater Sr/Ca record from benthic foraminiferal calcite and its application in determining global weathering fluxes, Earth Planet. Sc. Lett., 2081-2, 69-84, 2003.
    • Lear, C. H., Rosenthal, Y., Coxall, H. K., and Wilson, P. A.: Late Eocene to early Miocene ice sheet dynamics and the global carbon cycle, Paleoceanography, 194, 1-11, 2004.
    • Lear, C. H., Mawbey, E. M., and Rosenthal, Y.: Cenozoic benthic foraminiferal Mg/Ca and Li/Ca records: Toward unlocking temperatures and saturation states, Paleoceanography, 254, PA4215, doi:10.1029/2009PA001880, 2010.
    • Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A., and Demicco, R. V.: Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions in salt deposits, Science, 294, 1086-1088, doi:10.1126/science.1064280, 2001.
    • Lyle, M., Olivarez Lyle, A., Backman, J., and Tripati, A.: Biogenic sedimentation in the Eocene equatorial Pacific-the stuttering greenhouse and Eocene carbonate compensation depth, in: Proc. ODP, Sci. Results, 199: College Station, TX (Ocean Drilling Program), edited by: Wilson, P. A., Lyle, M., and Firth, J. V., 1-35, doi:10.2973/odp.proc.sr.199.219.2005, 2005.
    • Marchitto, T. M., Bryan, S. P., Curry, W. B., and McCorkle, D. C.: Mg/Ca temperature calibration for the benthic foraminifer Cibicidoides pachyderma, Paleoceanography, 22, PA1203, doi:10.1029/2006PA001287, 2007.
    • Marriott, C. S., Henderson, G. M., Crompton, R., Staubwasser, M., and Shaw, S.: Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate, Chem. Geol., 2121-2122, 5-15, 2004.
    • Martin, P. A., Lea, D. W., Mashiotta, T. A., Papenfuss, T., and Sarnthein, M.: Variation of foraminiferal Sr/Ca over Quaternary glacial-interglacial cycles: Evidence for changes in mean ocean Sr/Ca?, Geochem. Geophys. Geosyst., 1, 1004, doi:10.1029/1999GC000006, 1999.
    • Martin, W. and Sayles, F.: CaCO3 dissolution in sediments of the Ceara Rise, western equatorial Atlantic, Geochim. Cosmochim. Ac., 60, 233-263, 1996.
    • McElwain, J. C.: Do fossil plants signal palaeoatmospheric carbon dioxide concentration in the geological past?, Philos. T. R. Soc. B, 353, 83-96, 1998
    • Merico, A., Tyrrell, T., and Wilson, P. A.: Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall, Nature, 452, 979-983, 2008.
    • Miller, K., Kominz, M. A., Brwning, J. V., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and Pekar, S. F.: The phanerozoic record of global sea-level change, Science, 310, 1293-1298, 2005.
    • Pagani, M., Zachos, J., Freeman, K. H., Tipple, B., and Bohaty, S.: Marked decline in atmospheric carbon dioxide concentrations during the Paleogene, Science, 309, 600-603, 2005.
    • Pearson, P. N., Foster, G. L., and Wade, B. S.: Atmospheric carbon dioxide through the Eocene-Oligocene climate transition, Nature, 461, 1110-1113, 2009.
    • Petrizzo, M. R., Premoli Silva, I., and Ferrari, P.: Data Report: Paleogene Planktonic Foraminifer Biostratigraphy, ODP Leg 198 Holes 1209A, 1210A, and 1211A Shatsky Rise, Northwest Pacific Ocean, in: Proceedings of the Ocean Drilling Program: Scientific Results, 198, 2005.
    • Rae, J. W. B., Foster, G. L., Schmidt, D. N., and Elliott, T.: Boron isotopes and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system, Earth Planet. Sc. Lett., 302, 403-413, doi:10.1016/j.epsl.2010.12.034, 2011.
    • Rathburn, A. and Corliss, B.: The ecology of livingstained deep-sea benthic foraminifera from the Sulu Sea, Paleoceanography, 91, 87-150, 1994.
    • Rathmann, S. and Kuhnert, H.: Carbonate ion effect on Mg/Ca, Sr/Ca and stable isotopes on the benthic foraminifera Oridorsalis umbonatus off Namibia, Mar. Micropaleontol., 66, 120- 133, 2008.
    • Rathmann, S., Hess, S., Kuhnert, H., and Mulitza, S.: Mg/Ca ratios of the benthic foraminifera Oridorsalis umbonatus obtained by laser ablation from core top sediments: Relationship to bottom water temperature, Geochem. Geophys. Geosyst, 5, Q12013, doi:10.1029/2004GC000808, 2004.
    • Riesselman, C. R., Dunbar, R. B., Mucciarone, D. A., and Kitasei, S. S.: High resolution stable isotope and carbonate variability during the early Oligocene climate transition: Walvis Ridge ODP Site 1263: US Geological Survey and The National Academies, USGS OF-2007-1047, Short Research Paper 095, 2007.
    • Rosenthal, Y., Lear, C. H., Oppo, D. W., and Linsley, B. K.: Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species Hoeglundina elegans, Paleoceanography, 21, PA1007, doi:10.1029/2005PA001158, 2006.
    • Sexton, P. F., Wilson, P. A., and Pearson, P. N.: Microstructural and geochemical perspectives on planktic foraminiferal preservation:“Glassy” versus “Frosty”, Geochem. Geophys. Geosyst., 7, Q12P19, doi:10.1029/2006GC001291, 2006.
    • Sosdian, S. and Rosenthal, Y.: Deep-Sea Temperature and Ice Volume Changes Across the Pliocene-Pleistocene Climate Transitions, Science, 325, 306-310, 2009.
    • Spofforth, D. J. A., Agnini, C., Pa¨like, H., Rio, D., Fornaciari, E., Giusberti, L., Luciani, V., Lanci, L., and Muttoni, G.: Organic carbon burial following the middle Eocene climatic optimum in the central western Tethys, Paleoceanography, 25, PA3210, doi:10.1029/2009PA001738, 2010.
    • Stoll, H. M. and Schrag, D.: Effects of Quaternary sea level cycles on strontium in seawater, Geochim. Cosmochim. Ac., 627, 1107- 1118, 1998.
    • Stoll, H. M., Schrag, D. P., and Clemens, S. C.: Are seawater Sr/Ca variations preserved in quaternary foraminifera? - An in situ study in the Panama Basin, Geochim. Cosmochim. Ac., 63, 3535-3547, 1999.
    • Tripati, A. K. and Elderfield, H.: The impact of changing deepwater carbonate ion on reconstructions of temperature and seawater oxygen isotope ratios, paper presented at Biogeochemical Controls on Palaeoceanographic Proxies, Geol. Soc. London, 3-4 October 2005.
    • Tripati, A., Backman, J., Elderfield, H., and Ferretti, P.: Eocene bipolar glaciation associated with global carbon cycle changes, Nature, 436, 341-346, 2005.
    • Tripati, A. K., Eagle, R. A., Morton, A., Dowdeswell, J. A., Atkinson, K. L., Bahe, Y., Dawber, C. F., Khadun, E., Shaw, R. M. H., Shottle, O., and Thanabalasundaram, L.: Evidence for glaciation in the Northern Hemisphere back to 44 Ma from ice-rafted debris in the Greenland Sea, Earth Planet. Sc. Lett., 2651-2652, 112-122, 2008.
    • Tripati, A. K., Allmon, W. D., and Sampson, D. E.: Possible evidence for a large decrease in seawater strontium/calcium ratios and strontium concentrations during the Cenozoic, Earth Planet. Sc. Lett., 282, 122-130, doi:10.1016/j.epsl.2009.03.020, 2009.
    • Wilkinson, B. H. and Algeo, T. J.: Sedimentary carbonate record of calcium-magnesium cycling, Am. J. Sci., 289, 1158-1194, 1989.
    • Yu, J. and Elderfield, H.: Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state, Earth Planet. Sc. Lett., 2581-2582, 73-86, 2007.
    • Yu, J. and Elderfield, H.: Mg/Ca in the benthic foraminifera Cibicidoides wuellerstorfi and Cibicidoides mundulus: Temperature versus carbonate ion saturation, Earth Planet. Sc. Lett., 276, 129- 139, 2008.
    • Yu, J., Day, J., Greaves, M., and Elderfield, H.: Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS, Geochem. Geophys. Geosyst., 6, Q08P01, doi:10.1029/2005GC000964, 2005.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article