Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Samarelli, A.; Frigerio, J.; Sakat, E.; Baldassarre, L.; Gallacher, Kevin; Finazzi, M.; Isella, G.; Ortolani, M.; Biagioni, P.; Paul, D.J. (2016)
Publisher: Elsevier
Languages: English
Types: Article
In this work, the growth and the fabrication of heavily doped germanium plasmonic antennas for mid-infrared applications are reported. By tuning the phosphorus doping concentration and the antenna geometrical parameters, plasma frequencies for targeting the 8–15 μm spectral region are achieved. 1 μm thick, heavily doped (2.3 × 1019 cm− 3) germanium was used to fabricate dipole antennas of 800 nm width with a gap spacing of 300 nm which demonstrate resonance frequencies around 13 μm and 13.5 μm for 2 μm and 3 μm long structures, respectively. This technology has the potential to be used for mid-infrared sensing applications of hazardous gases and liquids.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions, Science 311 (2006) 189- 193.
    • [2] P. Biagioni, J.S. Huang, B. Hecht, Nanoantennas for visible and infrared radiation, Rep. Prog. Phys. 75 (2012) 024402.
    • [3] V. Giannini, A.I. Fernández-Domínguez, S.C. Heck,S.A. Maier, Plasmonic nanoantenTnas: fundamentals and their use in controlling the radiative properties of nanoemitters, Chem. Rev. 111 (201I1) P3888-3912.
    • [4] S. Lal, S. Link, N.J. Halas, Nano-optics from sensing to waveguiding, Nature RPhoton. 1 (2007) 641-648.
    • [5] L. Novotny,N. van Hulst, Antennas for light, Nature Photon. 5 (2011) 83C-90.
    • [6] R. Zia, J.A. Schuller, A. Chandran, M.L. Brnogersma, Plasmonics: tShenext chip-scale technology, Materials Today 9 (2006) 20-27. U
    • [7] F. Neubrech, A. Pucci, Th.W.Cornelius, S. Karim, A. García-Etxarri, J. Aizpurua, Resonant plasmonic N A
    • vibrational coupling in tailored nanoantenna for infrared detection, Phys. Rev. Lett. 101 (2008) 157403.
    • [8] R. Adato, A. Artar, S. Erramilli, H. Altug, Engineered absorption enhancement and induced transparency in M
    • coupled molecular and plasmonic resonator systems, Nano Lett. 13 (2013) 2584-2591.
    • [9] R. Adato, A.A. Yanika, J.J. Amsdenc, D.LD.Kaplanc, F.G. Omenettoc, M.K. Honge, S. Erramilli and H.Altug, Ultra-sensitive vibrational spectrosEcopy of protein monolayers with plasmonic nanoantenna arrays, T
    • Proc. Natl. Acad. Sci. 106 (2009) 19227-19232. P
    • [10] O. Limaj, S. Lupi, F. Mattioli, R. Leoni, M. Ortolani, M., Midinfrared surface plasmon sensor based on a E
    • substrateless metal mesh, Appl. Phys. Lett. 98 (2011) 091902. C
    • [11] M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L.El Hueso, A. Chuvilin, R. Hillenbrand, C
    • Nanofocusing of mid-infrared energy with tapered transmission lines, Nature Photon. 5 (2011) 283-287. A
    • [12] R. Soref, Mid-infrared photonics in silicon and germanium, Nature Photonics 4 (2010)495-497.
    • [13] L. Baldassarre, E. Calandrini, A. Samarelli, K. Gallacher, D.J. Paul, J. Frigerio, G. Isella, E. Sakat, M. Finazzi, P. Biagioni, M. Ortolani, Mid-Infrared plasmonic platform based on heavily doped epitaxial Ge-on-Si: retrieving the optical constants of thin Ge epilayers in 39th Proc. Int. Conf. Infrared, Millimeter, THz Waves, Tucson, USA (2014) pp. 1-3.
    • [14] G. Isella, D. Chrastina, B. Rossner, T. Hackbarth, H.-J. Herzog, U. Konig, H. von Kanel, Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices, Solid State Electron. 48 (2004) 1317.
    • [15] C. Rosenblad, H. R. Deller, A. Dommann, T. Meyer, P. Schroeter, and H. von Kanel, Silicon epitaxy by low-energy plasma enhanced chemical vapor deposition, J. Vac. Sci. Technol. A 16 (1998) 2785-2780.
    • [16] S. Cecchi, T. Etzelstorfer, E. Müller, D. Chrastina, G. Isella, J. Stangl, A. Samarelli, L. Ferre Llin, D.J. Paul, Ge/SiGe superlattices for thermoelectric energy conversion devices, J. Mat. Sci. 48 (2013) 2829-2835.
    • [17] A. Samarelli, L. Ferre Llin, S. Cecchi, J. Frigerio, T. Etzelstorfer, E. Müller, Y. ZhTang, J. R. Watling, D. Chrastina, G. Isella, J. Stangl, J. P. Hague, J. M. R. Weaver, P. Dobson, D. J. Paul, TIhe Pthermoelectric properties of Ge/SiGe modulation doped superlattices, J. Appl. Phys. 113 (2013) 233704. R
    • [18] L. Ferre Llin, A. Samarelli, S. Cecchi, T. Etzelstorfer, E. Müller Gubler, D. Chrastina, G. Isella, J. Stangl, J. C
    • M. R. Weaver, P. S. Dobson, D. J. Paul, The cross-plane thermoSelectric properties of p-Ge/Si0.5Ge0.5 superlattices, Appl. Phys. Lett. 103 (2013) 143507. U
    • [19] R. Camacho-Aguilera, Y. Cai, J. Bessette, L. Kimerling, J. Michel, High active carrier concentration in nN A
    • type, thin film Ge using delta-doping, Opt. Mater. Exp. 2 (2012)1462-1469.
    • [20] A. Samarelli, D.S. Macintyre, M.J. Strain, R.M. De La Rue, M. Sorel, S. Thoms, Optical characterization M
    • of a hydrogen silsesquioxane lithography process , J. Vac. Sci. Technol. B, 26 (2008)2290-2294.
    • [21] A. Samarelli, R.M. De La Rue, M. Sorel A. DCanciamilla, F. Morichetti, A. Melloni, Precise fabrication of coupled ring-resonator structures, in Proc. EuEropean Conf. on Lasers Electro-Optics 2009 European Quantum T
    • Electron. Conf. CLEO Europe - EQEC 2009., pp.1,1, (009) P
    • [22] M. Mirza, H. Zhou, X. Li, P. Velha, K. Docherty, A. Samarelli, G. Ternent, D.J. Paul, Nanofabrication of E
    • high aspect ratio (~50:1) sub-10 nm silicon nanowires using plasma etch technologies, J. Vac. Sci. Technol. B 30 (2012) 06FF02-1. C C
    • [23] P.R. Griffiths, J.A. de Haseth, Fourier Transform Infrared Spectrometry, Wiley: New York, 2007. A
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Funded by projects


Related to

  • fet-fp7FET Open: FET-Open Xtrack
  • fet-fp7FET Open: GErmanium MId-infrared plasmoNIcs for sensing

Cite this article