Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kasinathan, Kaviyarasu; Kennedy, John; Elayaperumal, Manikandan; Henini, Mohamed; Malik, Maaza (2016)
Publisher: Nature Publishing Group
Journal: Scientific Reports
Languages: English
Types: Article
Subjects: Article
To photo-catalytically degrade RhB dye using solar irradiation, CeO2 doped TiO2 nanocomposites were synthesized hydrothermally at 700??C for 9?hrs. All emission spectra showed a prominent band centered at 442?nm that was attributed to oxygen related defects in the CeO2-TiO2 nanocrystals. Two sharp absorption bands at 1418?cm?1 and 3323?cm?1 were attributed to the deformation and stretching vibration, and bending vibration of the OH group of water physisorbed to TiO2, respectively. The photocatalytic activities of Ce-TiO2 nanocrystals were investigated through the degradation of RhB under UV and UV+ visible light over a period of 8?hrs. After 8?hrs, the most intense absorption peak at 579?nm disappeared under the highest photocatalytic activity and 99.89% of RhB degraded under solar irradiation. Visible light-activated TiO2 could be prepared from metal-ion incorporation, reduction of TiO2, non-metal doping or sensitizing of TiO2 using dyes. Studying the antibacterial activity of Ce-TiO2 nanocrystals against E. coli revealed significant activity when 10??g was used, suggesting that it can be used as an antibacterial agent. Its effectiveness is likely related to its strong oxidation activity and superhydrophilicity. This study also discusses the mechanism of heterogeneous photocatalysis in the presence of TiO2.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. & Taga, Y. Visible Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science. 293, 269-271 (2001).
    • 2. Ranjana, V., Samdarshi, S. K. & Singh, J. Hexagonal Ceria Located at the Interface of Anatase/Rutile TiO2 Superstructure Optimized for High Activity under Combined UV and Visible-Light Irradiation. J. Phys. Chem. C. 119, 23899-23909 (2015).
    • 3. Chen, X., Liu, L., Peter, Y. & Mao, S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science. 331, 746-750 (2011).
    • 4. Ji, P., Zhang, J., Chen, F. & Anpo, M. Study of Adsorption and Degradation of Acid Orange on the Surface of CeO2 under Visible Light Irradiation. Appl. Catal. B. 85, 148-154 (2009).
    • 5. Liu, C., Tang, X., Mo, C. & Qiang, Z. Characterization and Activity of Visible-Light-Driven TiO2 Photocatalyst Co-doped with Nitrogen and Cerium. J. Solid State Chem. 181, 913-919 (2008).
    • 6. Chiang, Y. M., Lavik, E. B., Kosacki, I., Tuller, H. L. & Ying, J. Y. Defect and Transport Properties of Nanocrystalline CeO2-x. Appl. Phys. Lett. 69, 185-187 (1996).
    • 7. Munoz Batista, M. J., Goomez Cerezo, M. N., Kubacka, A., Tudela, D. & Fernandez-Garcia, M. Role of Interface Contact in CeO2- TiO2 Photocatalytic Composite Materials. ACS Catal. 4, 63-72 (2013).
    • 8. Tong, T. et al. Preparation of Ce-TiO2 Catalysts by Controlled Hydrolysis of Titanium Alkoxide Based on Estericfiation Reaction and Study on its Photocatalytic Activity. J. Colloid Interface Sci. 315, 382-388 (2007).
    • 9. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 283, 37-38 (1972).
    • 10. Li, F., Li, X., Hou, M., Cheah, K. & Choy, W. Enhanced Photocatalytic Activity of Ce3+ −TiO2 for 2-Mercaptobenzothiazole Degradation in Aqueous Suspension for Odour Control. Appl. Catal. A. 285, 181-189 (2005).
    • 11. Kubacka, A., Fernandez-Garcia, M. & Colon, G. Nanostructured Ti−M Mixed-Metal Oxides: Toward a Visible Light-Driven Photocatalyst. J. Catal. 254, 272-284 (2008).
    • 12. Suil, In. et al. Effective Visible Light-Activated B-Doped and B, N-Co-doped TiO2 Photocatalysts. J. Am. Chem. Soc. 129, 13790-13791 (2007).
    • 13. Verma, R. & Samdarshi, S. Correlating Oxygen Vacancies and Phase Ratio/Interface with Eficient Photocatalytic Activity in Mixed Phase TiO2. J. Alloys Compd. 629, 105-112 (2015).
    • 14. Yu, Y., Zhu, Y. & Meng, M. Preparation, Formation Mechanism and Photocatalysis of Ultrathin Mesoporous Single-Crystal-Like CeO2 Nanosheets. Dalton Trans. 42, 12087-12092 (2013).
    • 15. Primo, A., Marino, T., Corma, A., Molinari, R. & Garcia, H. Eficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO2 Obtained by a Biopolymer Templating Method. J. Am. Chem. Soc. 133, 6930-6933 (2011).
    • 16. Zhang, X. & Liu, Q. Preparation and characterization of titania photocatalyst co-doped with boron, nickel, and cerium. Mat. Lett. 62, 2589-2592 (2008).
    • 17. Yan, Q. Z., Su, X. T., Huang, Z. Y. & Ge, C. C. Sol-gel auto-igniting synthesis and structural property of cerium-doped titanium dioxide nanosized powders. J. Eur. Ceram. Soc. 26, 915-921 (2006).
    • 18. Xie, J. et al. Preparation and Characterization of Monodisperse Ce-Doped TiO2 Microspheres with Visible Light Photocatalytic Activity. J. Colloids Surf. A. 372, 107-114 (2010).
    • 19. Xiao, G., Huang, X., Liao, X. & Shi, B. One-Pot Synthesized of cerium-doped TiO2 mesoporous nanobfiers using collagen bfiers as the biotemplate and its application in visible light photocatalysis. J. Phys. Chem. C. 117, 9739-9746 (2013).
    • 20. Chiang, Y. M., Lavik, E. B., Kosacki, I., Tuller, H. L. & Ying, J. Y. Nonstoichiometry and Electrical Conductivity of Nanocrystalline CeO2-x. J. Electroceram. 1, 7-14 (1997).
    • 21. Yang, H. G. et al. Anatase TiO2, single crystals with a large percentage of reactive facets. Nature. 453, 638-642 (2008).
    • 22. Han, X. G., Kuang, Q., Jin, M. S., Xie, Z. X. & Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131, 3152-3153 (2009).
    • 23. Veerapandian, M., Sadhasivam, S., Choi, J. H. & Yun, K. S. Glucosamine functionalized copper nanoparticles: preparation, characterization and enhancement of antibacterial activity by ultraviolet irradiation. J. Chem. Eng. 209, 558-567 (2012).
    • 24. Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angrew. Chem. Int. Ed. Engl. 48, 60-103 (2009).
    • 25. Wang, Y., Li, Y. F. & Huang, C. Z. A one-pot green method for one-dimensional assembly of gold nanoparticles with a novel chitosan-ninhydrin bioconjugate at physiological temperature. J. Phys. Chem. C. 113, 4315-4320 (2009).
    • 26. Kaviyarasu, K., Manikandan, E., Paulraj, P., Mohamed, S. B. & Kennedy, J. One dimensional well-aligned CdO nanocrystals by solvothermal method. J. Alloys & Comp. 593, 67-70 (2014).
    • 27. Kaviyarasu, K., Sajan, S., Selvakumar, M. S., Augustine oThmas, S. & Prem Anand, D. A facile hydrothermal route to synthesize novel PbI2 nanorods. J. Phy. Chem. Sol. 73, 1396-1400 (2012).
    • 28. Wang, S. et al. CTAB assisted synthesis and photocatalytic property of CuO hollow microspheres. J. Sol. St. Chem. 182, 1088-1093 (2009).
    • 29. Yan, X., He, J., Evans, D. G., Zhu, Y. & Duan, X. Preparation characterization and photocatalytic activity of TiO2 formed from a mesoporous precursor. J. Por. Mat. 11(3), 131-139 (2004).
    • 30. Nidhin, M., Indumathy, R., Sreeram, K. J. & Nair, B. U. Synthesis of Iron Oxide Nanoparticles of Narrow Size Distribution on Polysaccharide Templates. Bul. Mat. Sci. 31, 93-96 (2008).
    • 31. Gao, S. A., Xian, A. P., Cao, L. H., Xie, R. C. & Shangm, J. K. Inuflence of Calcining Temperature on Photoresponse of TiO 2 Film under Nitrogen and Oxygen in Room Temperature. Sensors and Actuators B: Chemical. 134, 718-726 (2008).
    • 32. Chiang, K., Amal, R. & Tran, T. Photocatalytic Degradation of Cyanide using Titanium Dioxide Modified with Copper Oxide. Adv. Environ. Res. 6, 471-485 (2002).
    • 33. Zhang, D. E., Ni, X. M., Zheng, H. G., Zhang, X. J. & Song, J. M. Fabrication of rod-like CeO2: characterization, optical and electrochemical properties. Solid State Sci. 8, 1290-1293 (2006).
    • 34. Zhou, H. P. et al. eThrmally stable Pt/CeO 2 hetero-nanocomposites with high catalytic activity. J. Am. Chem. Soc. 132, 4998-4999 (2010).
    • 35. Phoka, S. et al. Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route. Mater. Chem. Phys. 115, 423-428 (2009).
    • 36. Zhang, D. S. et al. Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol. Inorg. Chem. 46, 2446-2451 (2007).
    • 37. Reddy, B. M., Katta, L. & Thrimurthulu, G. Novel nanocrystalline Ce1-xLaxO 2-d (x = 0.2) solid solutions: structural characteristics and catalytic performance. Chem. Mater. 22, 467-475 (2010).
    • 38. Singh, K., Acharya, S. A. & Bhoga, S. S. Low temperature processing of dense samarium-doped CeO2 ceramics: sintering and intermediate temperature ionic conductivity. Ionics. 13, 429-434 (2000).
    • 39. Sutradhar, N. et al. Facile low temperature synthesis of ceria and samarium-doped ceria nanoparticles and catalytic allylic oxidation of cyclohexene. J. Phys. Chem. C. 115, 7628-7637 (2011).
    • 40. Subrata, K. et al. Fabrication of catalytically active nanocrystalline samarium (Sm)-doped cerium oxide (CeO2) thin films using electron beam evaporation. J. Nanopart. Res. 14, 1040-1048 (2012).
    • 41. Lee, S. K. et al. The alteration of the structural properties and photocatalytic activity of TiO 2 following exposure to non-linear irradiation sources. Appl. Catal. B: Environ. 44, 173-184 (2003).
    • 42. Tubchareon, T., Soisuwan, S., Ratanathammaphan, S. & Praserthdam, P. Eefct of Na −, K−, Mg− and Ga dopants in A/B-sites on the optical band gap and photoluminescence behavior of [Ba0.5Sr0.5]TiO3 powders. J. Lumin. 142, 75-80 (2013).
    • 43. Kaviyarasu, K. et al. Photoluminescence of well-aligned ZnO doped CeO2 nanoplatelets by a solvothermal route. Mat. Lett. 183, 351-354 (2016).
    • 44. Wang, X. et al. Multi-type carbon doping of TiO2 photocatalyst. Chem. Phys. Lett. 444, 292-296 (2007).
    • 45. Umebayashi, T., Yamaki, T., Itoh, H. & Asai, K. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solids. 63, 1909-1920 (2002).
    • 46. Gai, Y. et al. Design of narrow-gap TiO2: a passivated codoping approach for enhanced photo electrochemical activity. Phys. Rev. Lett. 102, 036402 (2009).
    • 47. Dong, P., Liu, B., Wang, Y., Pei, H. & Yin, S. Nonmetal sulfur-doped coral-like cobalt ferrite nanoparticles with enhanced magnetic properties. J. Mater. Res. 25, 2392 (2010).
    • 48. Janke, N., Bieberle, A. & Weibmann, R. Characterization of sputter-deposited WO3 and CeO2−x-TiO2 thin films for electrochromic applications. iThn Solid Films . 392, 134-141 (2001).
    • 49. Toshiaki, O. et al. Temperature Dependence of the Raman Spectrum in Anatase TiO2. J. Phys. Soc. Jpn. 48, 1661-1668 (1980).
    • 50. Fang, F., Kennedy, J., Manikandan, E., Futter, J. & Markwitz, A. Morphology and characterization of TiO2 nanoparticles synthesized by arc discharge. Chem. Phy. Lett. 521, 86-90 (2012).
    • 51. Stylidi, M., Kondarides, D. I. & Verykios, X. E. Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl Catal B. 40, 271-286 (2003).
    • 52. Oman, Z. & Nuryatini, H. Synthesis, Characterization and Properties of CeO2-doped TiO2 Composite Nanocrystals. Mat. Sci. 19, 443-447 (2013).
    • 53. Kamat, P. V., Das, S., Thomas, K. G. & George, M. V. Ultrafast photochemical events associated with the photosensitization properties of a squaraine dye. Chem. Phys. Lett. 178, 75-79 (1991).
    • 54. Kosanie, M. M. & Trickovic, J. S. Degradation of pararosaniline dye photoassisted by visible light. J. Photochem. Photobiol. A. 149, 251-257 (2002).
    • 55. Amita, V. & Amish, G. J. Structural optical photoluminescence and photocatalytic characteristics of sol-gel derived CeO2-TiO2 films. Ind. J. Chem. 48, 161-167 (2009).
    • 56. Zhang, R. et al. Promotional eefct of uflorine on the selective catalytic reduction of NO with NH 3 over CeO2-TiO2 catalyst at low temperature. Appl. Surf. Sci. 289, 237-244 (2014).
    • 57. Kaviyarasu, K. et al. Synthesis and characterization studies of NiO nanorods for enhancing solar cell eficiency using photon upconversion materials. Cer. Int. 42, 8385-8394 (2016).
    • 58. Gong, Y. et al. Exploring the eefct of boron and tantalum codoping on the enhanced photocatalytic activity of TiO 2. Appl. Surf. Sci. 351, 746-752 (2015).
    • 59. Kaviyarasu, K., Manikandan, E., Nuru, Z. Y. & Maaza, M. Investigation on the structural properties of CeO2 nanofibers via CTAB surfactant. Mat. Lett. 160, 61-63 (2015).
    • 60. Sayyar, Z., Babaluo, A. & Shahrouzi, J. Kinetic study of formic acid degradation by Fe3+ doped TiO2 self-cleaning nanostructure surfaces prepared by cold spray. Appl. Surf. Sci. 335, 1-10 (2015).
    • 61. Fujishima, X. & Zhang, C. R. Titanium dioxide photocatalysis: Present situation and future approaches. Chimie. 9, 750-760 (2006).
    • 62. Zhenghua, F. et al. Enhanced photocatalytic activity of hierarchical flower-like CeO 2/TiO2 heterostructures. Mat. Lett. 175, 36-39 (2016).
    • 63. Kaviyarasu, K. et al. Solution processing of CuSe quantum dots: Photocatalytic activity under RhB for UV and visible-light solar irradiation. Mat. Sci. & Eng. B. 210, 1-9 (2016).
    • 64. Low, J., Cheng, B. & Yu, J. Surface modification and enhanced photocatalytic CO 2 reduction performance of TiO2: a review. Appl. Surf. Sci. 392, 658-686 (2017).
    • 65. Anpo, M. Use of visible light. Second-generation titanium dioxide photocatalysts prepared by the application of an advanced metal ion-implantation method. Pure. Appl. Chem. 72, 1787-1792 (2000).
    • 66. Phanichphant, S., Nakaruk, A. & Channei, D. Photocatalytic activity of the binary composite CeO2/SiO2 for degradation of dye. App. Sur. Sci. 387, 214-220 (2016).
    • 67. Hofmann, M. R., Martin, S. T., Choi, W. & Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69-94 (1995).
    • 68. Sajan, C. et al. TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res. 9, 3-27 (2016).
    • 69. Fijushima, A., Rao, T. N. & Tryk, D. A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C. Photochem. Rev. 1, 1-21 (2000).
    • 70. Hao, C. et al. Enhancement of photocatalytic properties of TiO2 nanoparticles doped with CeO2 and supported on SiO2 for phenol degradation. App. Sur. Sci. 331, 17-26 (2015).
    • 71. Magdalane, C. M. et al. Photocatalytic activity of binary metal oxide nanocomposites of CeO2/CdO nanospheres: Investigation of optical and antimicrobial activity. J. Photochem. & Photobio. B: Bio. 163, 77-86 (2016).
    • 72. Wang, H. et al. CeO2 doped anatase TiO2 with exposed (001) high energy facets and its performance in selective catalytic reduction of NO by NH3. App. Sur. Sci. 330, 245-252 (2015).
    • 73. Irie, H., Watanabe, Y. & Hashimoto, K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J. Phys. Chem. B. 97, 5483-5486 (2003).
    • 74. Akple, M. et al. Nitrogen-doped TiO2 micro sheets with enhanced visible light photocatalytic activity for CO2 reduction. Chin. J. Catal. 36, 2127-2134 (2015).
    • 75. Mehrotra, R. C. Synthesis and reactions of metal alkoxides. J. Non. Crys. Sol. 121, 1 (1990).
    • 76. Wen, J. et al. Photocatalysis fundamentals and surface modification of TiO 2 nanomaterials. Chin. J. Catal. 36, 2049-2070 (2015).
    • 77. Xiao, Q., Zhang, J., Xiao, C., Si, Z. & Tan, X. Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension Sol. Energy. 82, 706 -713 (2000).
    • 78. Xiaofei, Q., Dandan, X., Lei, G. & Fanglin, D. Synthesis and photocatalytic activity of TiO2/CeO2 core-shell nanotubes. Mat. Sci. Semi. Proc. 26, 657-662 (2014).
    • 79. Bae, E. & Choi, W. Highly Enhanced Photo reductive Degradation of Perchlorinated Compounds on Dye-Sensitized Metal/TiO2 under Visible Light. Environ. Sci. Technol. 37, 147-152 (2003).
    • 80. Wu, F. et al. Enhanced photocatalytic degradation and adsorption of methylene blue via TiO2 nanocrystals supported on graphenelike bamboo charcoal. Appl. Sur. Sci. 358, 425-435 (2015).
    • 81. Masoud, N. et al. eTh antibacterial eefct of cerium oxide nanoparticles on Staphylococcus aureus bacteria, Annals. Biol. Res. 3(7), 3671-3678 (2012).
    • 82. Xin, Li. et al. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A. 3, 2485-2534 (2015).
    • 83. Angel, E. et al. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity eefct of nanoparticles against HT-29 cancer cells. J. Photochem. & Photobio. B: Bio. 164, 352-360 (2016).
    • 84. Naghibi, S. et al. Exploring a new phenomenon in the bactericidal response of TiO2 thin films by Fe doping: Exerting the antimicrobial activity even aeftr stoppage of illumination. Appl. Surf. Sci. 327, 371-378 (2015).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article