LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wang, H; O'Sullivan, C (2016)
Publisher: Springer
Languages: English
Types: Other
Subjects:
Automatically recognizing activities in video is a classic problem in vision and helps to understand behaviors, describe scenes and detect anomalies. We propose an unsupervised method for such purposes. Given video data, we discover recurring activity patterns that appear, peak, wane and disappear over time. By using non-parametric Bayesian methods, we learn coupled spatial and temporal patterns with minimum prior knowledge. To model the temporal changes of patterns, previous works compute Markovian progressions or locally continuous motifs whereas we model time in a globally continuous and non-Markovian way. Visually, the patterns depict flows of major activities. Temporally, each pattern has its own unique appearance-disappearance cycles. To compute compact pattern representations, we also propose a hybrid sampling method. By combining these patterns with detailed environment information, we interpret the semantics of activities and report anomalies. Also, our method fits data better and detects anomalies that were difficult to detect previously.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Zhou, S., Chen, D., Cai, W., Luo, L., Low, M.Y.H., Tian, F., Tay, V.S.H., Ong, D.W.S., Hamilton, B.D.: Crowd Modeling and Simulation Technologies. ACM Trans. Model. Comput. Simul. 20(4) (November 2010) 20:1-20:35
    • 2. Ali, S., Shah, M.: Floor Fields for Tracking in High Density Crowd Scenes. In Forsyth, D., Torr, P., Zisserman, A., eds.: Computer Vision ECCV 2008. Number 5303 in Lecture Notes in Computer Science. Springer Berlin Heidelberg (October 2008) 1-14 DOI: 10.1007/978- 3-540-88688-4 1.
    • 3. Antonini, G., Martinez, S.V., Bierlaire, M., Thiran, J.P.: Behavioral Priors for Detection and Tracking of Pedestrians in Video Sequences. Int J Comput Vision 69(2) (May 2006) 159-180
    • 4. Emonet, R., Varadarajan, J., Odobez, J.: Extracting and locating temporal motifs in video scenes using a hierarchical non parametric Bayesian model. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (June 2011) 3233-3240
    • 5. Zhou, B., Tang, X., Wang, X.: Learning Collective Crowd Behaviors with Dynamic Pedestrian-Agents. Int J Comput Vis 111(1) (June 2014) 50-68
    • 6. Wang, X., Ma, K.T., Ng, G.W., Grimson, W.: Trajectory analysis and semantic region modeling using a nonparametric Bayesian model. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008. (June 2008) 1-8
    • 7. Wang, X., Ma, X., Grimson, W.: Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Models. IEEE Trans. Patt. Anal. Machine Intel. 31(3) (2009) 539-555
    • 8. Stauffer, C., Grimson, W.E.L.: Learning Patterns of Activity Using Real-Time Tracking. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INLIGENCE 22 (2000) 747-757
    • 9. Oliver, N., Rosario, B., Pentland, A.: A Bayesian computer vision system for modeling human interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8) (August 2000) 831-843
    • 10. Zelnik-Manor, L., Irani, M.: Event-based analysis of video. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001. Volume 2. (2001) II-123-II-130 vol.2
    • 11. Zhong, H., Shi, J., Visontai, M.: Detecting unusual activity in video. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. Volume 2. (June 2004) II-819-II-826 Vol.2
    • 12. Lin, D., Grimson, E., Fisher, J.: Learning visual flows: A Lie algebraic approach. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009. (June 2009) 747-754
    • 13. Yi, S., Li, H., Wang, X.: Understanding pedestrian behaviors from stationary crowd groups. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (June 2015) 3488-3496
    • 14. Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity Forecasting. In Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C., eds.: Computer Vision ECCV 2012. Number 7575 in Lecture Notes in Computer Science. Springer Berlin Heidelberg (October 2012) 201-214 DOI: 10.1007/978-3-642-33765-9 15.
    • 15. Xie, D., Todorovic, S., Zhu, S.C.: Inferring ”Dark Matter” and ”Dark Energy” from Videos. In: 2013 IEEE International Conference on Computer Vision (ICCV). (December 2013) 2224-2231
    • 16. Wang, X., Ma, K.T., Ng, G.W., Grimson, W.E.L.: Trajectory Analysis and Semantic Region Modeling Using Nonparametric Hierarchical Bayesian Models. Int J Comput Vis 95(3) (May 2011) 287-312
    • 17. Varadarajan, J., Emonet, R., Odobez, J.M.: A Sequential Topic Model for Mining Recurrent Activities from Long Term Video Logs. Int J Comput Vis 103(1) (December 2012) 100-126
    • 18. Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005. Volume 2. (June 2005) 524-531 vol. 2
    • 19. Sudderth, E.B., Torralba, A., Freeman, W.T., Willsky, A.S.: Describing Visual Scenes Using Transformed Objects and Parts. Int J Comput Vis 77(1-3) (2007) 291-330
    • 20. Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering object categories in image collections. ICCV 2005 (2005)
    • 21. Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words. Int. J. Comp. Vision 79(3) (2008) 299-318
    • 22. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley-Interscience (2005)
    • 23. Emonet, R., Varadarajan, J., Odobez, J.M.: Temporal Analysis of Motif Mixtures Using Dirichlet Processes. IEEE Transactions on Pattern Analysis and Machine Intelligence 36(1) (January 2014) 140-156
    • 24. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical Dirichlet Processes. J. Am. Stat. Assoc. 101(476) (2006) 1566-1581
    • 25. Dubey, A., Hefny, A., Williamson, S., Xing, E.P.: A non-parametric mixture model for topic modeling over time. arXiv:1208.4411 [stat] (August 2012) arXiv: 1208.4411.
    • 26. Wang, C., Blei, D.M.: A Split-Merge MCMC Algorithm for the Hierarchical Dirichlet Process. arXiv:1201.1657 [cs, stat] (January 2012) arXiv: 1201.1657.
    • 27. Lin, D., Grimson, E., Fisher, J.W.: Construction of Dependent Dirichlet Processes based on Poisson Processes. In Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A., eds.: Advances in Neural Information Processing Systems 23. Curran Associates, Inc. (2010) 1396-1404
    • 28. Blei, D.M., Frazier, P.I.: Distance Dependent Chinese Restaurant Processes. J. Mach. Learn. Res. 12 (November 2011) 2461-2488
    • 29. Wang, X., McCallum, A.: Topics over Time: A non-Markov Continuous-time Model of Topical Trends. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD '06, New York, NY, USA, ACM (2006) 424- 433
    • 30. Sethuraman, J.: A constructive definition of Dirichlet priors. Statistica Sinica 4 (1994) 639- 650
    • 31. Hoffman, M.D., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational inference. Journal of Machine Learning Research 14(1) (2013) 1303-1347
    • 32. Chang, J., Fisher, J.W.: Parallel Sampling of HDPs using Sub-Cluster Splits. (2014)
    • 33. Hughes, M.C., Fox, E.B., Sudderth, E.B.: Effective Split-Merge Monte Carlo Methods for Nonparametric Models of Sequential Data. (2012)
    • 34. Jain, S., Neal, R.: A Split-Merge Markov Chain Monte Carlo Procedure for the Dirichlet Process Mixture Model. Journal of Computational and Graphical Statistics 13 (2000) 158- 182
    • 35. Dahl, D.B.: Sequentially-Allocated Merge-Split Sampler for Conjugate and Nonconjugate Dirichlet Process Mixture Models. (2005)
    • 36. Majecka, B.: Statistical models of pedestrian behaviour in the Forum. MSc Dissertation, School of Informatics, University of Edinburgh, Edinburgh (2009)
    • 37. Luber, M., Spinello, L., Silva, J., Arras, K.O.: Socially-aware robot navigation: A learning approach. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (October 2012) 902-907
    • 38. Almingol, J., Montesano, L., Lopes, M.: Learning Multiple Behaviors from Unlabeled Demonstrations in a Latent Controller Space. (2013) 136-144
    • 39. Wang, H., Ondej, J., O'Sullivan, C.: Path Patterns: Analyzing and Comparing Real and Simulated Crowds. In: Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. I3D '16, New York, NY, USA, ACM (2016) 49-57
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article