LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Flockhart, Gordon M.H.; Maier, Robert R.J.; Barton, James S.; MacPherson, William N.; Jones, Julien D.C.; Chisholm, Karen E.; Zhang, Lin; Bennion, Ian; Read, Ian; Foote, Peter D.
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Optics
We describe the characterization of the temperature and strain responses of fiber Bragg grating sensors by use of an interferometric interrogation technique to provide an absolute measurement of the grating wavelength. The fiber Bragg grating temperature response was found to be nonlinear over the temperature range -70 °C to 80 °C. The nonlinearity was observed to be a quadratic function of temperature, arising from the linear dependence on temperature of the thermo-optic coefficient of silica glass over this range, and is in good agreement with a theoretical model.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Lasers Eng. 31, 297-324 1999 .
    • 2. G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proc. Optoelectron. 144, 156 -161 1997 .
    • 3. D. R. Hjelme, L. Bjerkan, S. Neegard, J. S. Rambech, and J. V. Aarsnes, “Application of Bragg grating sensors in the characterization of scaled marine vehicle models,” Appl. Opt. 36, 328 -336 1997 .
    • 4. K. Sugden, L. Zhang, J. A. R. Williams, R. W. Fallon, L. A. Everall, K. E. Chisholm, and I. Bennion, “Fabrication and characterization of bandpass filters based on concatenated chirped fiber gratings,” J. Lightwave Technol. 15, 1424 -1432 1997 .
    • 5. G. Ghosh, “Temperature dispersion of refractive-indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431- 433 1994 .
    • 6. S. Gupta, T. Mizunami, T. Yamao, and T. Shimomura, “Fiber Bragg grating cryogenic temperature sensors,” Appl. Opt. 35, 5202-5205 1996 .
    • 7. M. B. Reid and M. Ozcan, “Temperature dependence of fiber optic Bragg gratings at low temperatures,” Opt. Eng. 37, 237- 240 1998 .
    • 8. S. W. James, R. P. Tatam, A. Twin, M. Morgan, and P. Noonan, “Strain response of fibre Bragg grating sensors at cryogenic temperatures,” Meas. Sci. Technol. 13, 1535-1539 2002 .
    • 9. A. Hidayat, Q. Wang, P. Niay, M. Douay, B. Poumellec, F. Kherbouche, and I. Riant, “Temperature-induced reversible changes in spectral characteristics of fiber Bragg gratings,” Appl. Opt. 40, 2632-2642 2001 .
    • 10. G. M. H. Flockhart, R. McBride, W. N. MacPherson, J. D. C. Jones, K. E. Chisholm, L. Zhang, I. Bennion, I. Read, and P. D. Foote, “Application of Hilbert transforms to high resolution strain and temperature characterisation of fibre Bragg grating sensors,” in 14th International Conference on Optical Fiber Sensors, A. G. Mignani and H. C. Lefe`vre, eds., Proc. SPIE 4185, 25-28 2000 .
    • 11. O. V. Butov, K. M. Golant, and I. V. Nikolin, “Ultra-thermoresistant Bragg gratings written in nitrogen-doped silica fibres,” Electron. Lett. 38, 523-525 2002 .
    • 12. T. S. Priest, K. T. Jones, G. B. Scelsi, and G. A. Woolsey, “Thermal coefficients of refractive index and expansion in optical fibre sensing,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series Optical Society of America, Washington, D.C., 1997 , Paper OWC41.
    • 13. T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16, L97-L100 1983 .
    • 14. F. M. Haran, J. K. Rew, and P. D. Foote, “A strain-isolated fibre Bragg grating sensor for temperature compensation of fibre Bragg grating strain sensors,” Meas. Sci. Technol. 9, 1163-1166 1998 .
    • 15. G. Ghosh, “Temperature dispersion of refractive-indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431- 433 1994 .
    • 16. G. Ghosh, “Model for the thermo-optical coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191-196 1995 .
    • 17. D. A. Flavin, R. McBride, and J. D. C. Jones, “Short-scan interferometric interrogation and multiplexing of fibre Bragg grating sensors,” Opt. Commun. 170, 347-353 1999 .
    • 18. K. B. Rochford and S. D. Dyer, “Demultiplexing of interferometrically interrogated fiber Bragg grating sensors using Hilbert transform processing,” J. Lightwave Technol. 17, 831- 836 1999 .
    • 19. R. Kashyap, Fiber Bragg Gratings Academic Press, San Diego, Calif., 1999 .
    • 20. J. M. Jewell, “Thermooptic coefficients of some standard reference material glasses,” J. Am. Ceram. Soc. 74, 1689 -1691 1991 .
    • 21. J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Yamahita, “Temperature-dependence of refractive-index of SiO2 glass,” J. Non-Cryst. Solids 135, 86 - 89 1991 .
    • 22. G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical-fiber glasses,” J. Lightwave Technol. 12, 1338 -1342 1994 .
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article