Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Spencer, G. S.
Languages: English
Types: Unknown
The general aim of the work detailed in this thesis is to improve the quality of electroencepholography (EEG) recordings acquired simultaneously with functional magnetic resonance imaging (fMRI) data.\ud Simultaneous EEG-fMRI recordings offer significant advantages over the isolated use of each modality for measuring brain function. The high temporal resolution associated with EEG complements the high spatial resolution provided by fMRI. However, combining the two modalities can have significant effects on the overall data quality. The gradient artefact (GA), which is induced on the EEG cables by the time varying magnetic fields associated with fMRI sequences, can be particularly problematic to correct for in experiments containing any subject movement. In this thesis, two novel, movement-invariant methods are introduced for correcting the GA.\ud The first method is named the gradient model fit (GMF) and relies upon the assumption that the GA can be modelled as a linear combination of basis components, where the relative weighting of each component varies dependent upon subject position. By modelling these underlying components, it is possible to characterise and remove the GA, which is particularly beneficial in the presence of subject movement.\ud The second method named the difference model subtraction (DMS) relies on the assumption that the GA varies linearly for small changes in subject position. By modelling the change in GA for a basis set of likely head movements, it was shown to be possible to combine DMS with standard GA correction methods to improve the attenuation of the GA for data acquired during subject movement.\ud Both methods showed a significant improvement over the existing GA correction techniques, particularly for experiments containing subject movement. These methods are therefore relevant to any experimenter interested in working with subject groups such as children or patients where movement is likely to occur.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] S. Ogawa, T. Lee, A. Kay, and D. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proc. Natl. Acad. Sci. USA , vol. 87, no. 24, pp. 98689872, 1990.
    • [2] P. Allen, O. Josephs, and R. Turner, A Method for Removing Imaging Artifact from Continuous EEG Recorded during Functional MRI, NeuroImage, vol. 12, no. 2, pp. 230239, 2000.
    • [3] I. I. Rabi, J. R. Zacharias, S. Millman, and P. Kusch, A New Method of Measuring Nuclear Magnetic Moment, Phys. Rev., vol. 53, pp. 318318, 1938.
    • [4] I. I. Rabi, S. Millman, P. Kusch, and J. R. Zacharias, The Molecular Beam Resonance Method for Measuring Nuclear Magnetic Moments. The Magnetic Moments of 3Li6, 3Li7 and 9F19, Phys. Rev., vol. 55, pp. 526535, 1939.
    • [5] E. M. Purcell, H. C. Torrey, and R. V. Pound, Resonance Absorption by Nuclear Magnetic Moments in a Solid, Phys. Rev., vol. 69, pp. 3738, Jan 1946.
    • [6] F. Bloch, Nuclear Induction, Phys. Rev., vol. 70, pp. 460474, Oct 1946.
    • [7] P. C. Lauterbur, Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance, Nature, vol. 242, pp. 190191, 1973.
    • [8] P. Manseld and P. K. Grannell, NMR 'diraction' in solids?, Physics C: Solid State Physics , vol. 6, no. 22, p. L422, 1973.
    • [9] A. Garroway, P. Grannell, and P. Manseld, Image formation in NMR by a selective irradiative process, Journal of Physics C: Solid State Physics , vol. 7, no. 24, p. L457, 1974.
    • [10] A. Kumar, D. Welti, and R. R. Ernst, NMR fourier zeugmatography, nal of Magnetic Resonance , vol. 18, no. 1, pp. 6983, 1975.
    • [11] S. Ogawa, T. Lee, A. Nayak, and P. Glynn, Oxygenation-Sensitive Contrast in Magnetic Resonance Image of Rodent Brain at High Magnetic Fields, Magnetic Resonance in Medicine , vol. 14, no. 1, pp. 6878, 1990.
    • [12] S. Ogawa and T. Lee, Magnetic Resonance Imaging of Blood Vessels at High Fields: In Vivo and in Vitro measurements and Image Simulation, Magnetic Resonance in Medicine , vol. 16, no. 1, pp. 918, 1990.
    • [13] M. Goldman, Quantum Description of High-Resolution NMR in Liquids . Oxford University Press, 1st ed., 1988.
    • [14] P. Morris, Nuclear Magnetic Resonance Imaging in Medicine and Biology . Oxford University Press, 1st ed., 1986.
    • [15] D. W. McRobbie, E. Moore, M. Graves, and M. Prince, MRI: From Picture to Proton. Cambridge University Press, 2nd ed., 2007.
    • [16] J. Granwehr, MPAGS MR1 Foundations of Magnetic Resonance. [Nottingham University Lecture Notes], 2010.
    • [17] B. Cowan, Nuclear Magnetic Resonance and Relaxation . Cambridge University Press, 1st ed., 1997.
    • [18] M. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance . Wiley, 2001.
    • [19] R. Bowtell, MPAGS MR3 Advanced Topics in NMR. [Nottingham University Lecture Notes], 2011.
    • [20] S. Huettel, A. Song, and G. McCarthy, Functional Magnetic Resonance Imaging. Sinauer Associates, 2nd ed., 2009.
    • [21] M. Bernstein, K. King, and X. Zhou, Handbook of MRI Pulse Sequences . Elsevier Science, 2004.
    • [22] P. Manseld, Multi-planar image formation using nmr spin echoes, of Physics C: Solid State Physics , vol. 10, no. 3, pp. L55L58, 1977.
    • [23] R. M. S. Panchuelo, High Resolution Anatomical and Functional Imaging . PhD thesis, University of Nottingham, 2009.
    • [24] P. Glover and A. Howes, MPAGS MR2 MR Hardware. [Nottingham University Lecture Notes], 2010.
    • [25] R. Buxton, Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques . Cambridge University Press, 2nd ed., 2009.
    • [26] S. Kim and S. Ogawa, Biophysical and physiological origins of blood oxygenation level-dependent fmri signals, J Cereb Blood Flow Metab , vol. 32, no. 7, pp. 11881206, 2012.
    • [27] K. Kwong, J. Belliveau, D. Chesler, I. Goldberg, R. Weissko, B. Poncelet, D. Kennedy, B. Hoppel, M. Cohen, and R. Turner, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation., Proceedings of the National Academy of Sciences , vol. 89, no. 12, pp. 5675 5679, 1992.
    • [28] R. Sanchez-Panchuelo, S. Francis, R. Bowtell, and D. Schluppeck, Mapping human somatosensory cortex in individual subjects with 7t functional mri, Journal of Neurophysiology , vol. 103, no. 5, pp. 25442556, 2010.
    • [29] G. Berns, J. Chappelow, M. Cekic, C. Zink, G. Pagnoni, and M. MartinSkurski, Neurobiological substrates of dread, Science, vol. 312, no. 5774, pp. 754758, 2006.
    • [30] Y. Aghakhani, A. Bagshaw, C. Bˆ'nar, C. Hawco, F. Andermann, F. Dubeau, and J. Gotman, fmri activation during spike and wave discharges in idiopathic generalized epilepsy, Brain, vol. 127, no. 5, pp. 1127 1144, 2004.
    • [31] A. Owen, M. Coleman, M. Boly, M. Davis, S. Laureys, and J. Pickard, Detecting awareness in the vegetative state, Science, vol. 313, no. 5792, p. 1402, 2006.
    • [32] L. Pauling and C. Coryell, The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin, Proc. Natl. Acad. Sci U.S.A. , vol. 22, no. 4, pp. 210236, 1936.
    • [33] K. R. Thulborn, J. C. Waterton, P. M. Matthews, and G. K. Radda, Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high eld, Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 714, no. 2, pp. 265 270, 1982.
    • [34] P. Bandettini, E. Wong, R. Hinks, R. Tikofsky, and J. Hyde, Time course epi of human brain function during task activation, Magnetic Resonance in Medicine, vol. 25, no. 2, pp. 390397, 1992.
    • [35] S. Ogawa, D. Tank, R. Menon, J. Ellermann, S. Kim, H. Merkle, and K. Ugurbil, Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging, Proceedings of the National Academy of Sciences , vol. 89, no. 13, pp. 59515955, 1992.
    • [36] C. Roy and C. Sherrington, On the Regulation of the Blood-supply of the Brain, The Journal of Physiology , vol. 11, no. 1-2, pp. 85158.17, 1890.
    • [37] D. Attwell and C. Iadecola, The neuronal basis of functional brain imaging signals, Trends in Neurosciences , vol. 25, no. 12, pp. 621625, 2002.
    • [39] N. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oeltermann, Neurophysiological investigation of the basis of the fMRI signal, Nature, vol. 412, no. 6843, pp. 15157, 2001.
    • [40] K. Thomsen, N. Oenhauser, and M. Lauritzen, Principle neuron spiking: neither necessary nor sucient for cerebral blood ow in rat cerebellum, The Journal of Physiology , vol. 560, no. 1, pp. 181189, 2004.
    • [41] F. Shellock, Mrisafety.com, your information resource for mri safety, bioeects and patient management. http://www.mrisafety.com, [accessed: 2014 2nd July].
    • [42] J. Schenck, Safety of strong, static magnetic elds, Resonance Imaging , vol. 12, no. 1, pp. 219, 2000.
    • [43] D. Schaefer, J. Bourland, and J. Nyenhuis, Review of patient safety in timevarying gradient elds, Journal of Magnetic Resonance Imaging , vol. 12, no. 1, pp. 2029, 2000.
    • [44] H. Berger, ber das elektrenkephalogramm des menschen, Archiv fr Psychiatrie und Nervenkrankheiten , vol. 87, no. 1, pp. 527570, 1929.
    • [45] P. Nunez and R. Srinivasan, Electric elds of the brain: the neurophysics of EEG. Oxford University Press, 2nd ed., 2006.
    • [49] R. Plonsey and R. Barr, Bioelectricity: A Quantitative Approach . Springer Science, 3rd ed., 2007.
    • [50] A. Hodgkin and A. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol. 117, no. 4, pp. 500544, 1952.
    • [51] J. Malmivuo and R. Plonsey, Bioelectromagnetism - Principles and Applications of Bioelectric and Biomagnetic Fields . Oxford University Press, webversion ed., 1995.
    • [52] C. Michel and D. Brandeis, The Source and Temporal Dynamics of Scalp Electric Fields, in Simultaneous EEG and fMRI: Recording, Analysis, and Application (M. Ullsperger and S. Debener, eds.), pp. 319, Oxford University Press Inc., 2010.
    • [53] F. Lopes da Silva and A. Van Rotterdam, Biophysical aspects of EEG and magnetoencephalogram generation, in Electroencephalography: Basic Principles, Clinical Applications and Related Fields (5th Edition) (E. Niedermeyer and F. L. da Silva, eds.), pp. 107125, Lippincott Williams & Wilkins, 2005.
    • [54] H. Schwan and C. Kay, Capacitive properties of body tissues, Research, vol. 5, no. 4, pp. 439443, 1957.
    • [58] EASY CAP, Small Equidistant 29-Channel-Arrangment. http://www. easycap.de/easycap/e/electrodes/06_M22.htm , [accessed: 2014 06th May].
    • [59] Brain Products GmbH., EEG-fMRI Booklet. http://www. brainproducts.com/filedownload.php?path=products/brochures\ _material/EEG-fMRI-Booklet.pdf, 2011.
    • [60] F. L. da Silva, EEG: Origin and Measurement, in EEG-fMRI: Physiological Basis, Technique and Applications (C. Mulert and L. Lemieux, eds.), pp. 19 37, Springer, 2010.
    • [61] K. Mullinger, P. Castellone, and R. Bowtell, Best current practice for obtaining high quality EEG data during simultaneous FMRI, JoVE (Journal of Visualized Experiments) , no. 76, pp. e50283e50283, 2013.
    • [62] A. M. V. Rijn, A. Peper, and C. Grimbergen, High-quality recording of bioelectric events, Medical and Biological Engineering and Computing , vol. 29, no. 4, pp. 433440, 1991.
    • [63] B. Winter and J. Webster, Reduction of interference due to common-mode voltage in biopotential ampliers, IEEE Transactions on Biomedical Engineering, vol. 30, no. 1, pp. 5862, 1983.
    • [64] Brain Products GmbH., Brain Products GmbH / Products & Applications / BrainAmp MR plus. http://www.brainproducts.com/ productdetails.php?id=6, [accessed: 2014 2nd Feb].
    • [65] B. Winter and J. Webster, Driven-right-leg circuit design, IEEE Transactions on Biomedical Engineering , vol. 30, no. 1, pp. 626, 1983.
    • [66] W. Walter and M. Camb, The location of cerebral tumours by electroencephalography, The Lancet, vol. 2, no. 5893, pp. 305308, 1936.
    • deis, L. Gianotti, and J. Wackermann, eds.), pp. 124, Cambridge University Press, 2009.
    • [68] W. Walter and V. Dovey, Electroencephalography in cases of sub-cortical tumour, J. Neurol. Neurosurg. Psychiatry , vol. 7, no. 34, pp. 5765, 1944.
    • [69] E. Niedermeyer, The Normal EEG of the Waking Adult, in Electroencephalography: Basic Principles, Clinical Applications and Related Fields (5th Edition) (E. Niedermeyer and F. L. da Silva, eds.), pp. 167192, Lippincott Williams & Wilkins, 2005.
    • [70] A. Snyder and M. Raichle, Studies of the Human Brain Combining Functional Neuroimaging and Electrophysiological Methods, in Simultaneous EEG and fMRI: Recording, Analysis, and Application (M. Ullsperger and S. Debener, eds.), pp. 4765, Oxford University Press Inc., 2010.
    • [71] H. Laufs, A personalized history of EEG-fMRI integration, NeuroImage, vol. 62, pp. 10561067, 2012. 20 YEARS OF fMRI 20 YEARS OF fMRI.
    • [72] L. Lemieux, A. Salek-Haddadi, O. Josephs, P. Allen, N. Toms, C. Scott, K. Krakow, R. Turner, and D. Fish, Event-Related fMRI with Simultaneous and Continuous EEG: Description of the Method and Initial Case Report, NeuroImage, vol. 14, no. 3, pp. 780787, 2001.
    • [73] A. Salek-Haddadi, M. Merschhemke, L. Lemieux, and D. Fish, Simultaneous EEG-Correlated Ictal fMRI, NeuroImage, vol. 16, no. 1, pp. 3240, 2002.
    • [74] J. Baudewig, H. Bittermann, W. Paulus, and J. Frahm, Simultaneous EEG and functional MRI of epileptic activity: a case report, Clinical Neurophysiology, vol. 112, no. 7, pp. 11961200, 2001.
    • [75] H. Laufs and R. Thornton, Clinical Applications: Epilepsy, in Simultaneous EEG and fMRI: Recording, Analysis, and Application (M. Ullsperger and S. Debener, eds.), pp. 295310, Oxford University Press Inc., 2010.
    • [76] R. Goldman, J. Stern, J. E. Jr., and M. Cohen, Simultaneous EEG and fMRI of the alpha rhythm, NeuroReport, vol. 13, no. 18, pp. 24872492, 2002.
    • [77] B. Feige, K. Scheer, F. Esposito, F. D. Salle, J. Hennig, and E. E. Seifritz, Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation, Journal of Neurophysiology , vol. 93, no. 5, pp. 28642872, 2005.
    • [78] J. de Munck, S. Gonalves, L. Huijboom, J. Kuijer, P. Pouwels, R. Heethaar, and F. L. da Silva, The hemodynamic response of the alpha rhythm: An EEG/fMRI study, NeuroImage, vol. 35, no. 3, pp. 11421151, 2007.
    • [79] H. Laufs, K. Krakow, P. Sterzer, E. Eger, A. Beyerle, A. Salek-Haddadi, and A. Kleinschmidt, Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity uctuations at rest, Proceedings of the National Academy of Sciences , vol. 100, no. 19, pp. 11053 11058, 2003.
    • [80] H. Laufs, A. Kleinschmidt, A. Beyerle, E. Eger, A. Salek-Haddadi, C. Preibisch, and K. Krakow, EEG-correlated fMRI of human alpha activity, NeuroImage, vol. 19, no. 4, pp. 14631476, 2003.
    • [81] T. Eichele, K. Specht, M. Moosmann, M. Jongsma, R. Quiroga, H. Nordby, and K. Hugdahl, Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI, Proceedings of the National Academy of Sciences of the United States of America , vol. 102, no. 49, pp. 1779817803, 2005.
    • [82] V. Calhoun, T. Adali, G. Pearlson, and K. Kiehl, Neuronal chronometry of target detection: Fusion of hemodynamic and event-related potential data, NeuroImage, vol. 30, no. 2, pp. 544553, 2006.
    • [83] G. Iannetti and R. Wise, BOLD functional MRI in disease and pharmacological studies: room for improvement?, Magnetic Resonance Imaging , vol. 25, no. 6, pp. 978988, 2007.
    • [85] K. Mullinger, M. Brookes, C. Stevenson, P. Morgan, and R. Bowtell, Exploring the feasibility of simultaneous electroencephalography/functional magnetic resonance imaging at 7 T, Magnetic Resonance Imaging , vol. 26, no. 7, pp. 968977, 2008.
    • [86] I. Neuner, T. Warbrick, J. Arrubla, J. Felder, A. Celik, M. Reske, F. Boers, and N. J. Shah, EEG acquisition in ultra-high static magnetic elds up to 9.4 T, NeuroImage, vol. 68, pp. 214220, 2013.
    • [87] L. Lemieux, P. Allen, F. Franconi, M. Symms, and D. Fish, Recording of EEG during fMRI Experiments Patient Safety, Magnetic Resonance in Medicine, vol. 38, no. 6, pp. 943952, 1997.
    • [88] J. Ives, S. Warach, F. Schmitt, R. Edelman, and D. Schomer, Monitoring the patient's EEG during echo planar MRI, Electroencephalography and Clinical Neurophysiology , vol. 87, no. 6, pp. 417 420, 1993.
    • [89] T. Stevens, J. Ives, L. Klassen, and R. Bartha, MR compatibility of EEG scalp electrodes at 4 tesla, Journal of Magnetic Resonance Imaging , vol. 25, no. 4, pp. 872877, 2007.
    • [90] K. Mullinger, S. Debener, R. Coxon, and R. Bowtell, Eects of simultaneous EEG recording on MRI data quality at 1.5, 3 and 7 tesla, International Journal of Psychophysiology , vol. 67, no. 3, pp. 178 188, 2008.
    • [93] Q. Luo and G. Glover, Inuence of dense-array eeg cap on fmri signal, Magnetic Resonance in Medicine , vol. 68, no. 3, pp. 807815, 2012.
    • [94] W. Yan, K. Mullinger, M. Brookes, and R. Bowtell, Understanding gradient artefacts in simultaneous EEG/fMRI, NeuroImage, vol. 46, no. 2, pp. 459 471, 2009.
    • [95] J. Felblinger, J. Slotboom, R. Kreis, and B. Jung, Restoration of Electrophysiological Signals Distorted by Inductive Eect of Magnetic Field Gradients During MR Sequences, Magentic Resonance in Medicine , vol. 41, no. 4, pp. 715721, 1999.
    • [96] F. Huang-Hellinger, H. Breiter, G. McCormack, M. Cohen, K. Kwong, J. Sutton, R. Savoy, R. Weissko, T. Davis, J. Baker, J. Belliveau, and B. Rosen, Simultaneous functional magnetic resonance imaging and electrophysiological recording, Human Brain Mapping , vol. 3, no. 1, pp. 1323, 1995.
    • [97] R.M. Mri, J. Felblinger, K. Rsler, B. Jung, C. Hess, and C. Boesch, Recording of Electrical Brain Activity in Magnetic Resonance Environment: Distorting Eects of the Static Magnetic Field, Magnetic Resonance in Medicine, vol. 39, no. 1, pp. 1822, 1998.
    • [98] E. L. Reilly, Eeg recording and operation of the apparatus, in Electroencephalography: Basic Principles, Clinical Applications and Related Fields (5th Edition) (E. Niedermeyer and F. L. da Silva, eds.), pp. 139160, Lippincott Williams & Wilkins, 2005.
    • [99] P. LeVan, J. Maclaren, M. Herbst, R. Sostheim, M. Zaitsev, and J. Hennig, Ballistocardiographic artifact removal from simultaneous EEG-fMRI using an optical motion-tracking system, NeuroImage, vol. 75, pp. 111, 2013.
    • [101] W. Nakamura, K. Anami, T. Mori, O. Saitoh, A. Cichocki, and S. Amari, Removal of ballistocardiogram artifacts from simultaneously recorded eeg and fmri data using independent component analysis, Biomedical Engineering, IEEE Transactions on , vol. 53, no. 7, pp. 12941308, 2006.
    • [109] K. Mullinger, W. Yan, and R. Bowtell, Reducing the gradient artefact in simultaneous eeg-fmri by adjusting the subject's axial position, NeuroImage, vol. 54, no. 3, pp. 1942 1950, 2011.
    • [110] M. Chowdhury, K. Mullinger, and R. Bowtell, Simultaneous eeg-fmri: Gradient artefact reduction through cabling conguration., Presented at the 20th Annual Meeting of the ISMRM, Melbourne, 2012.
    • [111] K. Anami, T. Mori, F. Tanaka, Y. Kawagoe, J. Okamoto, M. Yarita, T. Ohnishi, M. Yumoto, H. Matsuda, and O. Saitoh, Stepping stone sampling for retrieving artifact-free electroencephalogram during functional magnetic resonance imaging, NeuroImage, vol. 19, no. 2, pp. 281295, 2003.
    • [112] M. Laudon, J. Webster, R. Frayne, and T. Grist, Minimizing interference from magnetic resonance imagers during electrocardiography, Biomedical Engineering, IEEE Transactions on , vol. 45, pp. 160164, Feb 1998.
    • [113] R. Masterton, D. Abbott, S. Fleming, and G. Jackson, Measurement and reduction of motion and ballistocardiogram artefacts from simultaneous EEG and fMRI recordings, NeuroImage, vol. 37, no. 1, pp. 202211, 2007.
    • [114] M. Chowdhury, K. Mullinger, P. Glover, and R. Bowtell, Reference layer artefact subtraction (RLAS): A novel method of minimizing EEG artefacts during simultaneous fMRI, NeuroImage, vol. 84, pp. 307319, 2014.
    • [117] R. Becker, P. Ritter, M. Moosmann, and A. Villringer, Visual evoked potentials recovered from fmri scan periods, Human Brain Mapping , vol. 26, no. 3, pp. 221230, 2005.
    • [119] F. Freyer, R. Becker, K. Anami, G. Curio, A. Villringer, and P. Ritter, Ultrahigh-frequency EEG during fMRI: Pushing the limits of imagingartifact correction, NeuroImage, vol. 48, no. 1, pp. 94108, 2009.
    • [120] R. Niazy, C. Beckmann, G. Iannetti, J. Brady, and S. Smith, Removal of FMRI environment artifacts from EEG data using optimal basis sets, NeuroImage, vol. 28, no. 3, pp. 720737, 2005.
    • [121] P. Allen, G. Polizzi, K. Krakow, D. Fish, and L. Lemieux, Identication of EEG Events in the MR Scanner: The Problem of Pulse Artifact and a Method for Its Subtraction, NeuroImage, vol. 8, no. 3, pp. 229239, 1998.
    • [125] E. Briselli, G. Garrea, L. Bianchi, M. Bianciardi, E. Macaluso, M. Abbafati, M. Marciani, and B. Maraviglia, An independent component analysis-based approach on ballistocardiogram artifact removing, Magnetic Resonance Imaging, vol. 24, no. 4, pp. 393400, 2006.
    • [126] D. Mantini, M. Perrucci, S. Cugini, A. Ferretti, G. Romani, and C. D. Gratta, Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis, NeuroImage, vol. 34, no. 2, pp. 598607, 2007.
    • [127] S. Debener, A. Strobel, B. Sorger, J. Peters, C. Kranczioch, A. Engel, and R. Goebel, Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: Removal of the ballistocardiogram artefact, NeuroImage, vol. 34, no. 2, pp. 587597, 2007.
    • [128] W. Yan, K. Mullinger, G. Geirsdottir, and R. Bowtell, Physical modeling of pulse artefact sources in simultaneous EEG/fMRI, Human Brain Mapping , vol. 31, no. 4, pp. 604620, 2010.
    • [129] M. Bencsik, R. Bowtell, and R. Bowley, Electric elds induced in a spherical volume conductor by temporally varying magnetic eld gradients, Physics in Medicine and Biology , vol. 47, no. 4, pp. 557576, 2002.
    • [130] J. Maclaren, B. Armstrong, R. Barrows, K. Danishad, T. Ernst, C. Foster, K. Gumus, M. Herbst, I. Kadashevich, T. Kusik, Q. Li, C. Lovell-Smith, T. Prieto, P. Schulze, O. Speck, D. Stucht, and M. Zaitsev, Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain, PLoS ONE, vol. 7, p. e48088, 11 2012.
    • [131] A. Papoulis, Probability, Random Variables, and Stochastic Processes . McGraw Hill, 2nd ed., 1984.
    • [134] M. Cohen, EPI and Functional MRI. http://www.brainmapping.org/ MarkCohen/Papers/EPI-fMRI.html, [accessed: 2014 19th September].
    • [136] P. Ritter, R. Becker, F. Freyer, and A. Villringer, Eeg quality: The image acquisition artefact, in EEG-fMRI: Physiological Basis, Technique and Applications (C. Mulert and L. Lemieux, eds.), pp. 153171, Springer, 2010.
    • [137] H. Laufs, J. Daunizeau, D. Carmichael, and A. Kleinschmidt, Recent advances in recording electrophysiological data simultaneously with magnetic resonance imaging, NeuroImage, vol. 40, no. 2, pp. 515528, 2008.
    • [138] M. Patel, A. Blum, J. Pearlman, N. Yousuf, J. Ives, S. Saeteng, D. Schomer, and R. Edelman, Echo-Planar Functional MR Imaging of Epilepsy with Concurrent EEG Monitoring, American Journal of Neuroradiology , vol. 20, no. 10, pp. 19161919, 1999.
    • [139] J. Gotman, C. BØnar, and F. Dubeau, Combining EEG and FMRI in epilepsy: methodological challenges and clinical results, Journal of Clinical Neurophysiology , vol. 21, no. 4, pp. 229240, 2004.
    • [143] A. Liston, J. D. Munck, K. Hamandi, H. Laufs, P. Ossenblok, J. Duncan, and L. Lemieux, Analysis of EEGfMRI data in focal epilepsy based on automated spike classication and Signal Space Projection, Neuroimage, vol. 31, no. 3, pp. 10151024, 2006.
    • [144] A. Salek-Haddadi, B. Diehl, K. Hamandi, M. Merschhemke, A. Liston, K. Friston, J. Duncan, D. Fish, and L. Lemieux, Hemodynamic correlates of epileptiform discharges: an EEG-fMRI study of 63 patients with focal epilepsy, Brain research, vol. 1088, no. 1, pp. 148166, 2006.
    • [145] C. Grova, J. Daunizeau, E. Kobayashi, A. Bagshaw, J. Lina, F. Dubeau, and J. Gotman, Concordance between distributed EEG source localization and simultaneous EEG-fMRI studies of epileptic spikes, Neuroimage, vol. 39, no. 2, pp. 755774, 2008.
    • [146] A. Bragin, J. Engel, C. Wilson, I. Fried, and G. BuzsÆki, High-frequency oscillations in human brain, Hippocampus, vol. 9, no. 2, pp. 137142, 1999.
    • [147] J. Jacobs, P. LeVan, R. Chander, J. Hall, F. Dubeau, and J. Gotman, Interictal high-frequency oscillations (80500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain, Epilepsia, vol. 49, no. 11, pp. 18931907, 2008.
    • [150] K. Kobayashi, Y. Watanabe, T. Inoue, M. Oka, H. Yoshinaga, and Y. Ohtsuka, Scalp-recorded high-frequency oscillations in childhood sleep-induced electrical status epilepticus, Epilepsia, vol. 51, no. 10, pp. 21902194, 2010.
    • [151] F. Pittau, F. Grouiller, L. Spinelli, M. Seeck, C. Michel, and S. Vulliemoz, The role of functional neuroimaging in pre-surgical epilepsy evaluation, Frontiers in neurology , vol. 5, 2014.
    • [159] J. Lachaux, P. Fonlupt, P. Kahane, L. Minotti, D. Homann, O. Bertrand, and M. Baciu, Relationship between task-related gamma oscillations and BOLD signal: New insights from combined fMRI and intracranial EEG, Human brain mapping , vol. 28, no. 12, pp. 13681375, 2007.
    • [161] S. Horovitz, M. Fukunaga, J. de Zwart, P. van Gelderen, S. Fulton, T. Balkin, and J. Duyn, Low frequency BOLD uctuations during resting wakefulness and light sleep: A simultaneous EEG-fMRI study, Human brain mapping , vol. 29, no. 6, pp. 671682, 2008.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Cite this article