LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Richardson, Alan (2008)
Publisher: Northumbria University
Languages: English
Types: Article
Subjects: K200
The purpose of the paper is to provide independent research and evaluate manufacturers’ claims that structural polypropylene fibres provide satisfactory crack control reinforcement and compare the test results from macro synthetic polypropylene fibres against steel fabric reinforced concrete, extensively used as a crack control medium in concrete ground bearing floor/hardstanding slabs where tensile forces are likely to occur. Three concrete beam types were produced, plain, steel reinforced and fibre reinforced, and a comparative study was undertaken of post crack flexural toughness. The procedure used was to manufacture steel A 142 fabric and macro fibre reinforced concrete beams to provide load, deflection data, toughness indices and was compliant with, ASTM C1018 -97, [ASTM, 1997] using a three point loading arrangement. The data was representative of what might occur in a floor slab. The findings of the paper is that A1 42 steel fabric reinforcement as used in slabs was more effective in producing toughness and residual strength when directly compared to the performance of structural polypropylene fibre reinforced concrete. When small post crack forces are encountered within the concrete matrix, polypropylene macro fibres are suitable for crack control. The paper makes direct comparisons between known and widely used crack control using steel fabric, and the use of low modulus polypropylene macro synthetic fibres as a crack control medium.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article