Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Nisticò, Giuseppe; Pascoe, D. J. (David J.); Nakariakov, V. M. (Valery M.) (2014)
Publisher: EDP Sciences
Languages: English
Types: Article
Subjects: QA, QB, QC, T1
Context. We present a new event of quasi-periodic wave trains observed in EUV wavebands that rapidly propagate away from an active region after a flare.\ud Aims. We measured the parameters of a wave train observed on 7 December 2013 after an M1.2 flare, such as the phase speeds, periods and wavelengths, in relationship to the local coronal environment and the energy sources.\ud Methods. We compared our observations with a numerical simulation of fast magnetoacoustic waves that undergo dispersive evolution and leakage in a coronal loop embedded in a potential magnetic field.\ud Results. The wave train is observed to propagate as several arc-shaped intensity disturbances for almost half an hour, with a speed greater than 1000 km s-1 and a period of about 1 min. The wave train followed two different patterns of propagation, in accordance with the magnetic structure of the active region. The oscillatory signal is found to be of high-quality, i.e. there is a large number (10 or more) of subsequent wave fronts observed. The observations are found to be consistent with the numerical simulation of a fast wave train generated by a localised impulsive energy release.\ud Conclusions. Transverse structuring in the corona can efficiently create and guide high-quality quasi-periodic propagating fast wave trains.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anfinogentov, S., Nisticò, G., & Nakariakov, V. M. 2013, A&A, 560, A107 Arber, T., Longbottom, A., Gerrard, C., & Milne, A. 2001, Journal of Computational Physics, 171, 151
    • Brady, C. S. & Arber, T. D. 2005, A&A, 438, 733
    • Cooper, F. C., Nakariakov, V. M., & Williams, D. R. 2003, A&A, 409, 325 de Moortel, I. 2009, Space Sci. Rev., 149, 65
    • De Moortel, I. & Nakariakov, V. M. 2012, Royal Society of London Philosophical Transactions Series A, 370, 3193
    • Díaz, A. J. 2006, A&A, 456, 737
    • Díaz, A. J., Zaqarashvili, T., & Roberts, B. 2006, A&A, 455, 709 Edwin, P. M. & Roberts, B. 1983, Sol. Phys., 88, 179
    • Jelínek, P. & Karlický, M. 2012, A&A, 537, A46
    • Jelínek, P., Karlický, M., & Murawski, K. 2012, A&A, 546, A49 Karlický, M., Jelínek, P., & Mészárosová, H. 2011, A&A, 529, A96 Karlický, M., Mészárosová, H., & Jelínek, P. 2013, A&A, 550, A1 Katsiyannis, A. C., Williams, D. R., McAteer, R. T. J., et al. 2003, A&A, 406, 709
    • Liu, W., Ofman, L., Nitta, N. V., et al. 2012, ApJ, 753, 52
    • Liu, W., Title, A. M., Zhao, J., et al. 2011, ApJ, 736, L13
    • Mészárosová, H., Dudík, J., Karlický, M., Madsen, F. R. H., & Sawant, H. S. 2013, Sol. Phys., 283, 473
    • Mészárosová, H., Karlický, M., & Rybák, J. 2011, Sol. Phys., 273, 393 Mészárosová, H., Karlický, M., Rybák, J., & Jirˇicˇka, K. 2009a, ApJ, 697, L108 Mészárosová, H., Sawant, H. S., Cecatto, J. R., et al. 2009b, Advances in Space Research, 43, 1479
    • Murawski, K. & Roberts, B. 1993a, Sol. Phys., 143, 89
    • Murawski, K. & Roberts, B. 1993b, Sol. Phys., 144, 255
    • Murawski, K., Zaqarashvili, T. V., & Nakariakov, V. M. 2011, A&A, 533, A18 Nakariakov, V. M., Arber, T. D., Ault, C. E., et al. 2004, MNRAS, 349, 705 Nakariakov, V. M., Hornsey, C., & Melnikov, V. F. 2012, ApJ, 761, 134 Nakariakov, V. M. & Melnikov, V. F. 2009, Space Sci. Rev., 149, 119 Nakariakov, V. M., Pascoe, D. J., & Arber, T. D. 2005, Space Sci. Rev., 121, 115 Nakariakov, V. M. & Roberts, B. 1995, Sol. Phys., 159, 399
    • Nisticò, G., Nakariakov, V. M., & Verwichte, E. 2013, A&A, 552, A57 Ofman, L., Liu, W., Title, A., & Aschwanden, M. 2011, ApJ, 740, L33 Pascoe, D. J., Nakariakov, V. M., & Arber, T. D. 2007, A&A, 461, 1149 Pascoe, D. J., Nakariakov, V. M., & Kupriyanova, E. G. 2013, A&A, 560, A97 Patsourakos, S., Vourlidas, A., Wang, Y. M., Stenborg, G., & Thernisien, A. 2009, Sol. Phys., 259, 49
    • Roberts, B. 1981a, Sol. Phys., 69, 39
    • Roberts, B. 1981b, Sol. Phys., 69, 27
    • Roberts, B., Edwin, P. M., & Benz, A. O. 1983, Nature, 305, 688 Roberts, B., Edwin, P. M., & Benz, A. O. 1984, ApJ, 279, 857 Shen, Y. & Liu, Y. 2012, ApJ, 753, 53
    • Shen, Y.-D., Liu, Y., Su, J.-T., et al. 2013, Sol. Phys., 288, 585 Sych, R., Zaqarashvili, T. V., Nakariakov, V. M., et al. 2012, A&A, 539, A23 Van Doorsselaere, T., Debosscher, A., Andries, J., & Poedts, S. 2004, A&A, 424, 1065
    • Verwichte, E., Foullon, C., & Nakariakov, V. M. 2006a, A&A, 449, 769 Verwichte, E., Foullon, C., & Nakariakov, V. M. 2006b, A&A, 452, 615 Wang, T. 2011, Space Sci. Rev., 158, 397
    • Yuan, D., Shen, Y., Liu, Y., et al. 2013, A&A, 554, A144
    • Zajtsev, V. V. & Stepanov, A. V. 1975, Issledovaniia Geomagnetizmu Aeronomii i Fizike Solntsa, 37, 3
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects


Cite this article