Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Soukarieh, F.; Nowicki, M.W.; Bastide, A.; Pöyry, T.; Jones, C.; Dudek, K.; Patwardhan, G.; Meullenet, F.; Oldham, N.J.; Walkinshaw, M.D.; Willis, A.E.; Fischer, P.M. (2016)
Publisher: Elsevier
Journal: European Journal of Medicinal Chemistry
Languages: English
Types: Article
Subjects: Cap-binding inhibitor, mRNA translation, Protein synthesis, eIF, eukaryotic translation initiation factor, 4E-BP, eF4E-binding protein, RRL, rabbit reticulocyte lysate, eIF4E, FP, fluorescence polarisation, Drug Discovery, Organic Chemistry, Pharmacology, m7G, N7-methyl guanosine, Cancer, Research Paper
Eukaryotic translation initiation factor 4E (eIF4E) is considered as the corner stone in the cap-dependent translation initiation machinery. Its role is to recruit mRNA to the ribosome through recognition of the 50 - terminal mRNA cap structure (m7 GpppN, where G is guanosine, N is any nucleotide). eIF4E is implicated in cell transformation, tumourigenesis, and angiogenesis by facilitating translation of oncogenic mRNAs; it is thus regarded as an attractive anticancer drug target. We have used two approaches to design capbinding inhibitors of eIF4E by modifying the N7 -substituent of m7 GMP and replacing the phosphate group with isosteres such as squaramides, sulfonamides, and tetrazoles, as well as by structure-based virtual screening aimed at identifying non-nucleotide cap-binding antagonists. Phosphomimetic nucleotide derivatives and highly ranking virtual hits were evaluated in a series of in vitro and cell-based assays to identify the first non-nucleotide eIF4E cap-binding inhibitor with activities in cell-based assays, N-[(5,6-dihydro-6-oxo-1,3-dioxolo[4,5-g]quinolin-7-yl)methyl]-N0 -(2-methyl-propyl)-N-(phenylmethyl)thiourea (14), including down-regulation of oncogenic proteins and suppression of RNA incorporation into polysomes. Although we did not observe cellular activity with any of our modified m7 GMP phosphate isostere compounds, we obtained X-ray crystallography structures of three such compounds in complex with eIF4E, 50 -deoxy-50 -(1,2-dioxo-3-hydroxycyclobut-3-en-4-yl)amino-N7 -methyl-guanosine (4a), N7 -3-chlorobenzyl-50 -deoxy-50 -(1,2-dioxo-3-hydroxy-cyclobut-3-en-4-yl)amino-guanosine (4f), and N7 -benzyl-50 -deoxy-50 -(trifluoromethyl-sulfamoyl)guanosine (7a). Collectively, the data we present on structure-based design of eIF4E cap-binding inhibitors should facilitate the optimisation of such compounds as potential anticancer agents.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] L.D. Kapp, J.R. Lorsch, The molecular mechanics of eukaryotic translation, Annu. Rev. Biochem. 73 (2004) 657e704.
    • [2] N. Sonenberg, A.G. Hinnebusch, Regulation of translation initiation in eukaryotes: mechanisms and biological targets, Cell 136 (2009) 731e745.
    • [3] A.M. Borman, Y.M. Michel, C.E. Malnou, K.M. Kean, Free poly(A) stimulates capped mRNA translation in vitro through the eIF4G-poly(A)-binding protein interaction, J. Biol. Chem. 277 (2002) 36818e36824.
    • [4] T. von der Haar, J.D. Gross, G. Wagner, J.E. McCarthy, The mRNA cap-binding protein eIF4E in post-transcriptional gene expression, Nat. Struct. Mol. Biol. 11 (2004) 503e511.
    • [5] B. Ghosh, A.O. Benyumov, P. Ghosh, Y. Jia, S. Avdulov, P.S. Dahlberg, M. Peterson, K. Smith, V.A. Polunovsky, P.B. Bitterman, C.R. Wagner, Nontoxic chemical interdiction of the epithelial-to-mesenchymal transition by targeting cap-dependent translation, ACS Chem. Biol. 4 (2009) 367e377.
    • [6] A.C. Gingras, B. Raught, N. Sonenberg, eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation, Annu. Rev. Biochem. 68 (1999) 913e963.
    • [7] I.G. Goodfellow, L.O. Roberts, Eukaryotic initiation factor 4E, Int. J. Biochem. Cell. Biol. 40 (2008) 2675e2680.
    • [8] A. De Benedetti, J.R. Graff, eIF-4E expression and its role in malignancies and metastases, Oncogene 23 (2004) 3189e3199.
    • [9] J.R. Graff, S.G. Zimmer, Translational control and metastatic progression: enhanced activity of the mRNA cap-binding protein eIF-4E selectively enhances translation of metastasis-related mRNAs, Clin. Exp. Metastasis 20 (2003) 265e273.
    • [10] S.G. Zimmer, A. DeBenedetti, J.R. Graff, Translational control of malignancy: the mRNA cap-binding protein, eIF-4E, as a central regulator of tumor formation, growth, invasion and metastasis, Anticancer Res. 20 (2000) 1343e1351.
    • [11] K. Feoktistova, E. Tuvshintogs, A. Do, C.S. Fraser, Human eIF4E promotes mRNA restructuring by stimulating eIF4A helicase activity, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 13339e13344.
    • [12] Y. Jia, V. Polunovsky, P.B. Bitterman, C.R. Wagner, Cap-dependent translation initiation factor eIF4E: an emerging anticancer drug target, Med. Res. Rev. 32 (2012) 786e814.
    • [13] J.R. Graff, B.W. Konicek, T.M. Vincent, R.L. Lynch, D. Monteith, S.N. Weir, P. Schwier, A. Capen, R.L. Goode, M.S. Dowless, Y. Chen, H. Zhang, S. Sissons, K. Cox, A.M. McNulty, S.H. Parsons, T. Wang, L. Sams, S. Geeganage, L.E. Douglass, B.L. Neubauer, N.M. Dean, K. Blanchard, J. Shou, L.F. Stancato, J.H. Carter, E.G. Marcusson, Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity, J. Clin. Invest. 117 (2007) 2638e2648.
    • [14] E. Darzynkiewicz, J. Stepinski, I. Ekiel, C. Goyer, N. Sonenberg, A. Temeriusz, Y. Jin, T. Sijuwade, D. Haber, S.M. Tahara, Inhibition of eukaryotic translation by nucleoside 50-monophosphate analogs of mRNA 50-cap: changes in N7 substituent affect analog activity, Biochemistry 28 (1989) 4771e4778.
    • [15] C.J. Brown, I. McNae, P.M. Fischer, M.D. Walkinshaw, Crystallographic and mass spectrometric characterisation of eIF4E with N7-alkylated cap derivatives, J. Mol. Biol. 372 (2007) 7e15.
    • [16] Y. Jia, T.L. Chiu, E.A. Amin, V. Polunovsky, P.B. Bitterman, C.R. Wagner, Design, synthesis and evaluation of analogs of initiation factor 4E (eIF4E) cap-binding antagonist Bn-7-GMP, Eur. J. Med. Chem. 45 (2010) 1304e1313.
    • [17] P. Ghosh, C. Park, M.S. Peterson, P.B. Bitterman, V.A. Polunovsky, C.R. Wagner, Synthesis and evaluation of potential inhibitors of eIF4E cap binding to 7- methyl GTP, Bioorg. Med. Chem. Lett. 15 (2005) 2177e2180.
    • [18] E. Darzynkiewicz, I. Ekiel, P. Lassota, Tahara. Inhibition of eukaryotic translation by analogs of messenger RNA 50-cap: chemical and biological consequences of 50-phosphate modifications of 7-methylguanosine 50- monophosphate, Biochemistry 26 (1987) 4372e4380.
    • [19] J. Kowalska, M. Lukaszewicz, J. Zuberek, M. Ziemniak, E. Darzynkiewicz, J. Jemielity, Phosphorothioate analogs of m7GTP are enzymatically stable inhibitors of cap-dependent translation, Bioorg. Med. Chem. Lett. 19 (2009) 1921e1925.
    • [20] X. Chen, D.J. Kopecky, J. Mihalic, S. Jeffries, X. Min, J. Heath, J. Deignan, S. Lai, Z. Fu, C. Guimaraes, S. Shen, S. Li, S. Johnstone, S. Thibault, H. Xu, M. Cardozo, W. Shen, N. Walker, F. Kayser, Z. Wang, Structure-guided design, synthesis, and evaluation of guanine-derived inhibitors of the eIF4E mRNA-cap interaction, J. Med. Chem. 55 (2012) 3837e3851.
    • [21] S. Li, Y. Jia, B. Jacobson, J. McCauley, R. Kratzke, P.B. Bitterman, C.R. Wagner, Treatment of breast and lung cancer cells with a N-7 benzyl guanosine monophosphate tryptamine phosphoramidate pronucleotide (4Ei-1) results in chemosensitization to gemcitabine and induced elF4E proteasomal degradation, Mol. Pharm. 10 (2013) 523e531.
    • [22] E. Papadopoulos, S. Jenni, E. Kabha, K.J. Takrouri, T. Yi, N. Salvi, R.E. Luna, E. Gavathiotis, P. Mahalingam, H. Arthanari, R. Rodriguez-Mias, R. YefidoffFreedman, B.H. Aktas, M. Chorev, J.A. Halperin, G. Wagner, Structure of the eukaryotic translation initiation factor eIF4E in complex with 4EGI-1 reveals an allosteric mechanism for dissociating eIF4G, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) E3187eE3195.
    • [23] D. Lama, S.T. Quah, C.S. Verma, R. Lakshminarayanan, R.W. Beuerman, D.P. Lane, C.J. Brown, Rational optimization of conformational effects induced by hydrocarbon staples in peptides and their binding interfaces, Sci. Rep. 3 (2013) 3451.
    • [24] C.J. Brown, S.G. Dastidar, H.Y. See, D.W. Coomber, M. Ortiz-Lombardia, C. Verma, D.P. Lane, Rational design and biophysical characterization of thioredoxin-based aptamers: insights into peptide grafting, J. Mol. Biol. 395 (2010) 871e883.
    • [25] P.M. Fischer, Cap in hand: targeting eIF4E, Cell Cycle 8 (2009) 2535e2541.
    • [26] P.L. Beaulieu, D.R. Cameron, J.M. Ferland, J. Gauthier, E. Ghiro, J. Gillard, V. Gorys, M. Poirier, J. Rancourt, D. Wernic, M. Llinas-Brunet, R. Betageri, M. Cardozo, E.R. Hickey, R. Ingraham, S. Jakes, A. Kabcenell, T. Kirrane, S. Lukas, U. Patel, J. Proudfoot, R. Sharma, L. Tong, N. Moss, Ligands for the tyrosine kinase p56lck SH2 domain: discovery of potent dipeptide derivatives with monocharged, nonhydrolyzable phosphate replacements, J. Med. Chem. 42 (1999) 1757e1766.
    • [27] E. Darzynkiewicz, J. Stepinski, I. Ekiel, C. Goyer, N. Sonenberg, A. Temeriusz, Y. Jin, T. Sijuwade, D. Haber, S.M. Tahara, Inhibition of eukaryotic translation by nucleoside 50-monophosphate analogues of mRNA 50-cap: changes in N7 substituent affect analogue activity, Biochemistry 28 (1989) 4771e4778.
    • [28] Y. Jia, T.L. Chiu, E.A. Amin, V. Polunovsky, P.B. Bitterman, C.R. Wagner, Design, synthesis and evaluation of analogs of initiation factor 4E (eIF4E) cap-binding antagonist Bn7-GMP, Eur. J. Med. Chem. 45 (2010) 1304e1313.
    • [29] K. Seio, T. Miyashita, K. Sato, M. Sekine, Synthesis and properties of new nucleotide analogues possessing squaramide moieties as new phosphate isosters, Eur. J. Org. Chem. (2005) 5163e5170.
    • [30] K. Sato, K. Seio, M. Sekine, Squaryl group as a new mimic of phosphate group in modified oligodeoxynucleotides: synthesis and properties of new oligodeoxynucleotide analogues containing an internucleotidic squaryldiamide linkage, J. Am. Chem. Soc. 124 (2002) 12715e12724.
    • [31] P. Huang, J. Ramphal, J. Wei, C. Liang, B. Jallal, G. McMahon, C. Tang, Structurebased design and discovery of novel inhibitors of protein tyrosine phosphatases, Bioorg. Med. Chem. 11 (2003) 1835e1849.
    • [32] C. Zingle, L. Kuntz, D. Tritsch, C. Grosdemange-Billiard, M. Rohmer, Isoprenoid biosynthesis via the methylerythritol phosphate pathway: structural variations around phosphonate anchor and spacer of fosmidomycin, a potent inhibitor of deoxyxylulose phosphate reductoisomerase, J. Org. Chem. 75 (2010) 3203e3207.
    • [33] R.J. Herr, 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods, Bioorg. Med. Chem. 10 (2002) 3379e3393.
    • [34] M. Sekine, Y. Seio, T. Miyashita, K. Sato, Preparation of Nucleoside Analogs Having Squaric Acid or Deltic Acid-derived Moiety, Jpn. Kokai Tokkyo Koho JP2005162631, Japan Science and Technology Agency, Japan, 2005.
    • [35] B.L. Zhang, Z.Y. Cui, L.L. Sun, Synthesis of 5 0-deoxy-5 '-thioguanosine-50- monophosphorothioate and its incorporation into RNA 5 '-termini, Org. Lett. 3 (2001) 275e278.
    • [36] G.H. McGall, A.D. Barone, M. Diggelmann, S.P.A. Fodor, E. Gentalen, N. Ngo, The efficiency of light-directed synthesis of DNA arrays on glass substrates, J. Am. Chem. Soc. 119 (1997) 5081e5090.
    • [37] D.K. Dean, An improved synthesis of 50-amino-50-deoxyguanosine, Synth. Commun. 32 (2002) 1517e1521.
    • [38] J.M. Delfino, C.J. Stankovic, S.L. Schreiber, F.M. Richards, Synthesis of a bipolar phosphatidylethanolamine: a model compound for a membrane-spanning probe, Tetrahedron Lett. 28 (1987) 2323e2326.
    • [39] T. Moriguchi, N. Asai, K. Okada, K. Seio, T. Sasaki, M. Sekine, First synthesis and anticancer activity of phosmidosine and its related compounds, J. Org. Chem. 67 (2002) 3290e3300.
    • [40] J.J. Irwin, T. Sterling, M.M. Mysinger, E.S. Bolstad, R.G. Coleman, ZINC: a free tool to discover chemistry for biology, J. Chem. Inf. Model. 52 (2012) 1757e1768.
    • [41] M. McGann, FRED pose prediction and virtual screening accuracy, J. Chem. Inf. Model. 51 (2011) 578e596.
    • [42] M. McGann, FRED and HYBRID docking performance on standardized datasets, J. Comp. Aided Mol. Des. 26 (2012) 897e906.
    • [43] D.A. Dougherty, Cation-m interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp, Science 271 (1996) 163e168.
    • [44] J.C. Ma, D.A. Dougherty, The cation-pi interaction, Chem. Rev. 97 (1997) 1303e1324.
    • [45] G. Patwardhan, F. Meullenet, M.W. Nowicki, N.J. Oldham, A.E. Willis, M.D. Walkinshaw, P.M. Fischer, Molecular modeling leading the way: toward nonnucleotide analogs targeting the eIF4E-mRNA cap interaction as novel anticancer agents, in: The 238th ACS National Meeting, Washington, DC, USA, 2009 p Abs. MEDI 461.
    • [46] D.F. Veber, S.R. Johnson, H.-Y. Cheng, B.R. Smith, K.W. Ward, K.D. Kopple, Molecular properties that influence the oral bioavailability of drug candidates, J. Med. Chem. 45 (2002) 2615e2623.
    • [47] T.I. Oprea, A.M. Davis, S.J. Teague, P.D. Leeson, Is there a difference between leads and drugs? A historical perspective, J. Chem. Inf. Comp. Sci. 41 (2001) 1308e1315.
    • [48] L. Lindqvist, H. Imataka, J. Pelletier, Cap-dependent eukaryotic initiation factor-mRNA interactions probed by cross-linking, RNA 14 (2008) 960e969.
    • [49] H.R. Pelham, R.J. Jackson, An efficient mRNA-dependent translation system from reticulocyte lysates, Eur. J. Biochem. 67 (1976) 247e256.
    • [50] J. Chan, S.N. Khan, I. Harvey, W. Merrick, J. Pelletier, Eukaryotic protein synthesis inhibitors identified by comparison of cytotoxicity profiles, RNA 10 (2004) 528e543.
    • [51] S.L. He, R. Green, Polysome analysis of mammalian cells, Methods Enzymol. 530 (2013) 183e192.
    • [52] J. Marcotrigiano, A.-C. Gingras, N. Sonenberg, S.K. Burley, Cocrystal structure of the messenger RNA 50 cap-binding protein (eIF4E) bound to 7-methyl-GDP, Cell 89 (1997) 951e961.
    • [53] K. Schmitz, F. Hahn, U. Schepers, Modified GSMP synthesis greatly improves the disulfide crosslink of T7 run-off siRNAs with cell penetrating peptides, Synlett (2010) 2959e2963.
    • [54] P.C.D. Hawkins, A.G. Skillman, G.L. Warren, B.A. Ellingson, M.T. Stahl, Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and cambridge structural database, J. Chem. Inf. Model. 50 (2010) 572e584.
    • [55] P.C.D. Hawkins, A. Nicholls, Conformer generation with OMEGA: learning from the data set and the analysis of failures, J. Chem. Inf. Model. 52 (2012) 2919e2936.
    • [56] N.A. Anikin, V.M. Anisimov, V.L. Bugaenko, V.V. Bobrikov, A.M. Andreyev, LocalSCF method for semiempirical quantum-chemical calculation of ultralarge biomolecules, J. Chem. Phys. 121 (2004) 1266e1270.
    • [57] T.G.G. Battye, L. Kontogiannis, O. Johnson, H.R. Powell, A.G.W. Leslie, iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM, Acta Crystallogr. D. 67 (2011) 271e281.
    • [58] W. Kabsch, XDS, Acta Crystallogr. D. 66 (2010) 125e132.
    • [59] M.D. Winn, C.C. Ballard, K.D. Cowtan, E.J. Dodson, P. Emsley, P.R. Evans, R.M. Keegan, E.B. Krissinel, A.G.W. Leslie, A. McCoy, S.J. McNicholas, G.N. Murshudov, N.S. Pannu, E.A. Potterton, H.R. Powell, R.J. Read, A. Vagin, K.S. Wilson, Overview of the CCP4 suite and current developments, Acta Crystallogr. D. 67 (2011) 235e242.
    • [60] P.D. Adams, P.V. Afonine, G. Bunkoczi, V.B. Chen, I.W. Davis, N. Echols, J.J. Headd, L.-W. Hung, G.J. Kapral, R.W. Grosse-Kunstleve, A.J. McCoy, N.W. Moriarty, R. Oeffner, R.J. Read, D.C. Richardson, J.S. Richardson, T.C. Terwilliger, P.H. Zwart, PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. D. 66 (2010) 213e221.
    • [61] A.J. McCoy, R.W. Grosse-Kunstleve, P.D. Adams, M.D. Winn, L.C. Storoni, R.J. Read, Phaser crystallographic software, J. Appl. Crystallogr. 40 (2007) 658e674.
    • [62] P. Emsley, B. Lohkamp, W.G. Scott, K. Cowtan, Features and development of coot, Acta Crystallogr. D. 66 (2010) 486e501.
  • No similar publications.
  • BioEntity Site Name
    2v8wProtein Data Bank
    2v8xProtein Data Bank
    2v8yProtein Data Bank
    4dt6Protein Data Bank
    4ebpProtein Data Bank
    4egiProtein Data Bank

Share - Bookmark

Funded by projects

Cite this article