LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Barchiesi, Marco; Cagnetti, Filippo; Fusco, Nicola (2013)
Publisher: European Mathematical Society Publishing House
Languages: English
Types: Article
Subjects: QA299

Classified by OpenAIRE into

arxiv: Mathematics::Metric Geometry, Mathematics::Differential Geometry
Identifiers:doi:10.4171/JEMS/391
The isoperimetric inequality for Steiner symmetrization of any\ud codimension is investigated and the equality cases are characterized. Moreover, a quantitative version of this inequality is proven for convex sets.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] L. Ambrosio, N. Fusco & D. Pallara. Functions of bounded variation and free discontinuity problems, in the Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000).
    • [2] F.J. Almgren & E.H. Lieb. Symmetric rearrangement is sometimes continuous. J. Amer. Math. Soc. 2, 683- 773 (1989).
    • [3] A.Barvinok. A course in convexity, in the Graduate Studies in Mathematics, vol. 54. American Mathematical Society, Providence, 2002.
    • [4] F. Brock & A. Y. Solynin. An approach to symmetrization via polarization. Trans. Amer. Math. Soc. 352, 1759-1796 (2000).
    • [5] M. Chleb´ık, A. Cianchi & N. Fusco. The perimeter inequality under Steiner symmetrization: cases of equality. Ann. of Math. 162, 525-555 (2005).
    • [6] S.-K. Chua & R. L. Wheeden. Weighted Poincar´e inequalities on convex domains. Math. Res. Lett. 17, 993-1011 (2010).
    • [7] A. Cianchi & N. Fusco. Functions of bounded variation and rearrangements. Arch. for Rat. Mech. and Anal. 165, 1-40 (2002).
    • [8] M. Cicalese & G. Leonardi. A Selection Principle for the Sharp Quantitative Isoperimetric Inequality. Preprint (2010).
    • [9] I. Drelichman & R.G. Dur´an. Improved Poincar´e inequalities with weights. J. Math. Anal. Appl. 347, 286-293 (2008).
    • [10] L. Esposito, N. Fusco & C. Trombetti. A quantitative version of the isoperimetric inequality: the anisotropic case. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4, 619-651 (2005).
    • [11] A. Figalli, F. Maggi & A. Pratelli. A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182, 167-211 (2010).
    • [12] B. Fuglede. Stability in the isoperimetric problem for convex or nearly spherical domains in Rn. Trans. Amer. Math. Soc. 314, 619-638 (1989).
    • [13] N. Fusco, F. Maggi & A. Pratelli. The sharp quantitative isoperimetric inequality. Ann. of Math. 168, 941-980 (2008).
    • [14] R.R. Hall. A quantitative isoperimetric inequality in n-dimensional space. J. Reine Angew. Math. 428, 161- 176 (1992).
    • [15] R.R. Hall, W.K. Hayman & A.W. Weitsman. On asymmetry and capacity. J. d'Analyse Math. 56, 87-123 (1991).
    • [16] V.G. Maz'ja. Sobolev spaces, in the Springer Series in Soviet Mathematics. Springer-Verlag, Berlin (1985).
    • [17] A.I. Vol'pert. Spaces BV and quasi-linear equations. Math. USSR Sb. 17, 225-267 (1967). (M. Barchiesi) Dipartimento di Matematica ed Applicazioni, Universita` di Napoli “Federico II”, Via Cintia, 80126 Napoli, Italy E-mail address: (F. Cagnetti) Departamento de Matema´tica Instituto Superior T´ecnico, Av. Rovisco Pais, 1049- 001 Lisboa, Portugal E-mail address: (N. Fusco) Dipartimento di Matematica ed Applicazioni, Universita` di Napoli “Federico II”, Via Cintia, 80126 Napoli, Italy E-mail address:
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok