Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gordon, I.; Premet, A. (2002)
Publisher: American Mathematical Society
Languages: English
Types: Article
Subjects: QA
No abstract available.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] D.J. Benson. Representations and Cohomology I. Cambridge studies in advanced mathematics, number 30. Cambridge University Press, 1991. MR 92m:20005
    • [2] A. Borel. Linear Algebraic Groups. Number 126 in Graduate Texts in Mathematics. SpringerVerlag, second edition, 1991. MR 92d:20001
    • [3] K.A. Brown and I. Gordon. The rami cation of centres: Lie algebras in positive characteristic and quantised enveloping algebras. To appear in Math. Zeit.
    • [4] W.W. Crawley-Boevey. Tameness of biserial algebras. Arch. Math. (Basel), 65:399{407, 1995. MR 96i:16021
    • [5] Yu. A. Drozd. On representations of the Lie algebra sl2. Visn. Kiiv. Univ. Mat. i Mekh. 25:70{77, 1983 [Ukranian]. MR 86j:17010
    • [6] K. Erdmann. Blocks of tame representation type and related algebras. Number 1428 in Lecture Notes in Mathematics. Springer-Verlag, 1990. MR 91c:20016
    • [7] R. Farnsteiner. Periodicity and representation type of modular Lie algebras. J. reine angew. Math., 464:47{65, 1995. MR 97a:17019
    • [8] G. Fischer. Dastellungtheorie des ersten Frobeniuskerns der SL2. PhD thesis, Universitat Bielefeld, 1982.
    • [9] E.M. Friedlander and B.J. Parshall. Geometry of p-unipotent Lie algebras. J. Alg., 109:25{45, 1987. MR 89a:17017
    • [10] E.M. Friedlander and B.J. Parshall. Rational actions associated to the adjoint representation. Ann. scient. Ec. Norm. Sup., 20(4):215{226, 1987. MR 88k:14026
    • [11] E.M. Friedlander and B.J. Parshall. Modular representation theory of Lie algebras. Amer. J. Math., 110(6):1055{1093, 1988. MR 89j:17015
    • [12] E.M. Friedlander and B.J. Parshall. Deformations of Lie algebra representations. Amer. J. Math., 112(3):375{395, 1990. MR 91e:17012
    • [13] P. Gabriel. Finite representation type is open. In V. Dlab and P. Gabriel, editors, Representations of Algebras, number 488 in Springer Lecture Notes in Mathematics, pages 132{155, 1974. MR 51:12944
    • [14] C. Gei . On degenerations of tame and wild algebras. Arch. Math., 64:11{16, 1995. MR 95k:16014
    • [15] I.M. Gelfand and V.A. Ponomarev. Indecomposable representations of the Lorenz group. Usp. Mat. Nauk, 232:3{60, 1968; English transl. in Russian Math Surveys 23 2:1{58. MR 37:5325
    • [16] I. Gordon. Representations of semisimple Lie algebras in positive characteristic and quantum groups at roots of unity. SFB preprint 00-007, Universitat Bielefeld.
    • [17] R. Gordon and E.L. Green. Graded Artin algebras. J. Algebra, 76:111{137, 1982. MR 83m:16028
    • [18] J.E. Humphreys. Re ection Groups and Coxeter Groups. Number 29 in Cambridge studies in advanced mathematics. Cambridge University Press, 1990. MR 92h:20002
    • [19] J.E. Humphreys. Conjugacy Classes in Semisimple Algebraic Groups, volume 43 of Math. Surveys Monographs. Amer. Math. Soc., Providence, RI, 1995. MR 97i:200567
    • [20] L.E.P. Hupert. Homological characteristics of pro-uniserial rings. J. Algebra, 69:43{66, 1981. MR 83b:16018b
    • [21] J.C. Jantzen. Kohomologie von p-Lie-Algebren und nilpotente Elemente. Abh. Math. Sem. Univ. Hamburg, 56:191{219, 1986. MR 88e:17019
    • [22] J.C. Jantzen. Representations of Algebraic Groups. Academic Press, Boston, 1987. MR 89c:20001
    • [23] J.C. Jantzen. Support varieties of Weyl modules. Bull. London Math. Soc., 19:238{244, 1987. MR 88e:17008
    • [24] J.C. Jantzen. Representations of Lie algebras in prime characteristic. In Representation Theories and Algebraic Geometry, A. Broer, editor, Proceedings Montreal 1997 (NATO ASI series C 514), pages 185{235. Dordrecht etc, Kluwer, 1998. MR 99h:17026
    • [25] J. C. Jantzen. Modular representations of reductive Lie algebras. J. Pure Appl. Algebra 152: 133{185, 2000. MR 2001j:17016
    • [26] J.C. Jantzen. Subregular nilpotent representations of sln and so2n+1. Math. Proc. Camb. Phil. Soc., 126:223{257, 1999. MR 99k:17037
    • [27] H. Kraft. Geometric methods in representation theory. In Representations of Algebras, M. Auslander and E. Lluis, editors, number 944 in Springer Lecture Notes in Mathematics, pages 80{258, 1982. MR 84c:14007
    • [28] M. Meyer-ter-Vehn. Kocher von reduzierten Einhullenden. Diplomarbeit, Universitat Freiburg, 2000.
    • [29] A.A. Mil'ner. The maximal degree of irreducible representations of a Lie algebra over a eld of positive characteristic. Funkt. Anal. i Prilozen., 14, 1980 [Russian]; English transl. in Funct. Anal. Appl., 14:136{137, 1980. MR 81h:17012
    • [30] I. Mirkovic and D. Rumynin. Centers of reduced enveloping algebras. Math. Zeit., 231:123{ 132, 1999. MR 2001i:17032
    • [31] D.K. Nakano, B.J. Parshall and D.C.Vella. Support varieties for algebraic groups. Preprint, 2000.
    • [32] D. K. Nakano and R. D. Pollack. Blocks of nite type in reduced enveloping algebras for classical Lie algebras. J. London Math. Soc (2) 61: 374{394, 2000. MR 2001f:17040
    • [33] R.D. Pollack Restricted Lie algebras of bounded type. Bull. Amer. Math. Soc. 74(2): 326{331, 1968. MR 36:2661
    • [34] A. Premet. The Green ring of the simple three-dimensional Lie p-algebra. Soviet Math. (Iz. VUZ), 35(10):51{60, 1991. MR 93i:17007
    • [35] A. Premet. An analogue of the Jacobson-Morozov theorem for Lie algebras of reductive groups of good characteristics. Trans. Amer. Math. Soc., 347(8):2961{2988, 1995. MR 95k:17012
    • [36] A. Premet. Irreducible representations of Lie algebras of reductive groups and the KacWeisfeiler conjecture. Invent. Math., 121(1):79{117, 1995. MR 96g:17007
    • [37] A. Premet. Support varieties of non-restricted modules over Lie algebras of reductive groups. J. London Math. Soc., 55(2):236{250, 1997. MR 98a:17076
    • [38] A. Premet. Complexity of Lie algebra representations and nilpotent elements of the stabilizers of linear forms. Math. Zeit., 228(2):225{282, 1998. MR 99i:17023
    • [39] J. Rickard. The representation type of self-injective algebras. Bull. London Math. Soc., 22:540{546, 1990. MR 92f:16015
    • [40] C.M. Ringel. The representation type of local algebras. In V. Dlab and P. Gabriel, editors, Representations of Algebras, number 488 in Springer Lecture Notes in Mathematics, pages 282{305, 1974. MR 52:3241
    • [41] C.M. Ringel. The indecomposable representations of the dihedral 2-groups. Math. Ann. 214:19{34, 1975. MR 51:680
    • [42] A.N. Rudakov. Reducible p-representations of a simple three-dimensional Lie p-algebra. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 6: 45{49, 1982 [Russian]; English transl. in Moscow Univ. Math. Bull. 37(6):51{56, 1982. MR 84g:17016
    • [43] J. R. Schue. Symmetry for the enveloping algebra of a restricted Lie algebra. Proc. Amer. Math. Soc., 16:1123{1124, 1965. MR 32:2515
    • [44] T. A. Springer and R. Steinberg. Conjugacy classes. In Seminar on Algebraic Groups and Related Finite Groups, volume 131 of Lecture Notes in Mathematics, pages 167{276. SpringerVerlag, 1970. MR 42:3091
    • [45] T.A. Springer. Some arithmetical results on semi-simple Lie algebras. Publ. I.H.E.S., 30:115{ 141, 1966. MR 34:5993
    • [46] B. Ju. Veisfeiler and V.G. Kac. The irreducible representations of Lie p-algebras. Funkt. Anal. i Prilozen., 5(2):28{36, 1971 [Russian]; English transl. in Funct. Anal. Appl. 5:111{117, 1971. MR 44:2793
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article