LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
McCarthy, John E. G.; Marsden, Steven; von der Haar, Tobias (2007)
Publisher: Elsevier
Languages: English
Types: Part of book or chapter of book
Subjects: Q
A growing number of biophysical techniques use immobilized reactants for the quantitative study of macromolecular reactions. Examples of such approaches include surface plasmon resonance, atomic force microscopy, total reflection fluorescence microscopy, and others. Some of these methods have already been adapted for work with immobilized RNAs, thus making them available for the study of many reactions relevant to translation. Published examples include the study of kinetic parameters of protein/RNA interactions and the effect of helicases on RNA secondary structure. The common denominator of all of these techniques is the necessity to immobilize RNA molecules in a functional state on solid supports. In this chapter, we describe a number of approaches by which such immobilization can be achieved, followed by two specific examples for applications that use immobilized RNAs.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Summers, W. C., and Jakes, K. (1971) Biochem Biophys Res Commun 45, 315-20.
    • Summers, W. C., and Siegel, R. B. (1970) Nature 228, 1160-2.
    • von der Haar, T., Ball, P. D., and McCarthy, J. E. (2000) J Biol Chem 275, 30551-5.
    • Marsden, S., Nardelli, M., Linder, P., and McCarthy, J. E. (2006) J Mol Biol 361, 327-35.
    • (2004) Proc Natl Acad Sci U S A 101, 12893-8.
    • Liphardt, J., Onoa, B., Smith, S. B., Tinoco, I. J., and Bustamante, C. (2001) Science 292, 733-7.
    • Tinoco, I., P, T. X. L., and Bustamante, C. (2006) Q Rev Biophys, 1-36.
    • Lillis, B., Manning, M., Berney, H., Hurley, E., Mathewson, A., and Sheehan, M. M. (2006) Biosens Bioelectron 21, 1459-67.
    • Hauck, S., Drost, S., Prohaska, E., Wolf, H., and Dübel, S. (2002) in "ProteinProtein Interactions." (Golemis, E., Ed.), pp. 273-83., CSHL Press, New York.
    • Matsuo, H., Moriguchi, T., Takagi, T., Kusakabe, T., Buratowski, S., Sekine, M., Kyogoku, Y., and Wagner, G. (2000) J. Am. Chem. Soc. 122, 2417-21.
    • Frick, D. N., Baradaran, K., and Richardson, C. C. (1998) Proc Natl Acad Sci U S A 95, 7957-62.
    • Mendelman, L. V., and Richardson, C. C. (1991) J Biol Chem 266, 23240-50.
    • Lisdat, F., Utepbergenov, D., Haseloff, R. F., Blasig, I. E., Stocklein, W., Scheller, F. W., and Brigelius-Flohe, R. (2001) Anal Chem 73, 957-62.
    • Hendy, J. G., and Cauchi, M. N. (1990) Am J Hematol 34, 151-3.
    • Ptushkina, M., von der Haar, T., Karim, M. M., Hughes, J. M., and McCarthy, J. E. (1999) Embo J 18, 4068-75.
    • Nair, T. M., Myszka, D. G., and Davis, D. R. (2000) Nucleic Acids Res 28, 1935-40.
    • (1999) Biochimie 81, 995-1002.
    • von der Haar, T., and McCarthy, J. E. (2003) Methods 29, 167-74.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • WT

Cite this article