Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhang, JG; Liu, Y; Tang, D (2016)
Publisher: De Gruyter
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: Physics::Optics
Optical sampling based on ultrafast optical nonlinearities is a useful technique to monitor the waveforms of ultrashort optical pulses. In this paper, we present a new implementation of optical waveform sampling systems by employing our newly constructed free-running mode-locked fibre laser with a tunable repetition rate and a low timing jitter, an all-optical waveform sampler with a highly nonlinear fibre (HNLF), and our developed computer algorithm for optical waveform display and measurement, respectively. Using a femtosecond fibre laser to generate the highly stable optical sampling pulses and exploiting the four-wave mixing effect in a 100m-long HNLF, we successfully demonstrate the all-optical waveform sampling of a 10GHz optical clock pulse sequence with a pulse width of 1.8 ps and a 80Gbit/s optical data signal, respectively. The experimental results show that the waveforms of the tested optical pulse signals are accurately reproduced with a pulse width of 2.0 ps. This corresponds to a temporal resolution of 0.87 ps for optical waveform measurement. Moreover, the optical eye diagram of a 10Gbit/s optical data signal with a 1.8ps pulse width is also accurately measured by employing our developed optical sampling system.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • P.A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling”, Laser & Photon. Rev. 1, 231-248 (2007).
    • M. Westlund, P.A. Andrekson, H. Sunnerud, J. Hansryd, and J. Li, “High-performance opticalfiber-nonlinearity-based optical waveform monitoring”, J. Lightwave Technol. 23, 2012-2022 (2005).
    • M. Shirane, Y. Hashimoto, H. Yamada and H. Yokoyama, “A compact optical sampling measurement system using mode-locked laser-diode modules”, IEEE Photon. Technol. Lett. 12, 1537-1539 (2000).
    • R.L. Jungerman, G. Lee, O. Buccafusca, Y. Kaneko, N. Itagaki, R. Shioda, A. Harada, Y. Nihei and G. Sucha, “1-THz bandwidth C- and L-band optical sampling with a bit rate agile timebase”, IEEE Photon. Technol. Lett. 14, 1148-1150 (2002).
    • N. Yamada, S. Nogiwa and H. Ohta, “640-Gb/s OTDM signal measurement with high-resolution optical sampling system using wavelength-tunable soliton pulses”, IEEE Photon. Technol. Lett.
    • 6. C. Schmidt-Langhorst, C. Schubert, C. Boerner, V. Marembert, S. Ferber, R. Ludwig and H.G. Weber, “Optical sampling system including clock recovery for 320 Gbit/s DPSK and OOK data signals”, Proceedings of Optical Fiber Communication Conference (Anaheim, California, USA, 6-11 March 2005), Paper OWJ6, 2005.
    • 7. J. Li, M. Westlund, H. Sunnerud, B.E. Olsson, M. Karlsson and P.A. Andrekson, “0.5-Tb/s eyediagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber”, IEEE Photon. Technol. Lett. 16, 566-568 (2004).
    • 8. I. Shake, E. Otani, H. Takara, K. Uchiyama, Y. Yamabayashi and T. Morioka, “Bit rate flexible quality monitoring of 10 to 160 Gbit/s optical signals based on optical sampling technique”, Electron. Lett. 36, 2087-2088 (2000).
    • 9. C. Schmidt-Langhorst, C. Schubert, C. Boerner and R. Ludwig, “Optical sampling technologies and applications”, Proceedings of Optical Fiber Communication Conference (Anaheim, California, USA, 6-11 March 2005), Paper OTuG2, 2005.
    • 10. M. Westlund, H. Sunnerud, M. Karlsson and P.A. Andrekson, “Software-synchronized alloptical sampling for fiber communication systems”, J. Lightwave Technol. 23, 1088-1099 (2005).
    • 11. M. Westlund, H. Sunnerud, M. Karlsson and P. Andrekson, “Software-synchronized all-optical sampling”, Proceedings of Optical Fiber Communication Conference (Atlanta, Georgia, USA, 23-28 March 2003), pp. 409-410, 2003.
    • 12. H. Ji, H. Hu, M. Galili, L.K. Oxenlowe, M. Pu, K. Yvind, J.M. Hvam and P. Jeppesen, “Optical waveform sampling and error-free demultiplexing of 1.28 Tbit/s serial data in a silicon nanowire”, Proceedings of Optical Fiber Communication Conference (San Diego, CA, USA, 21- 25 March 2010), Paper PDPC7, 2010.
    • 13. J. Van Erps, F. Luan, M.D. Pelusi, T. Iredale, S. Madden, D.-Y. Choi, D.A. Bulla, B. LutherDavies, H. Thienpont, and B.J. Eggleton, “High-resolution optical sampling of 640-Gb/s data using four-wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides”, J. Lightwave Technol. 28, 209-215 (2010).
    • 14. H. Ohta, N. Banjo, N. Yamada, S. Nogiwa and Y. Yanagisawa, “Measuring eye diagram of 320 Gbit/s optical signal by optical sampling using passively modelocked fibre laser”, Electron. Lett. 37, 1541-1542 (2001).
    • 15. H. Takara, S. Kawanishi, T. Morioka, K. Mori and M. Saruwatari, “100Gbit/s optical waveform measurement with 0.6ps resolution optical sampling using subpicosecond supercontinuum pulses”, Electron. Lett. 30, 1152-1153 (1994).
    • 16. T. Kiatchanog, K. Igarashi, T. Tanemura, D. Wang, K. Katoh and K. Kikuchi, “Real-time alloptical waveform sampling using a free-running passively mode-locked fiber laser as the sampling pulse source”, Proceedings of Optical Fiber Communication Conference (Anaheim, CA, USA, 5-10 March 2006), Paper OWN1, 2006.
    • 17. I. Kang and K.F. Dreyer, “Sensitive 320 Gbit/s eye diagram measurements via optical sampling with semiconductor optical amplifier-ultrafast nonlinear interferometer”, Electron. Lett. 39, 1081-1083 (2003).
    • 18. Y. Liu, J.-G. Zhang and W. Zhao, “Design of wideband, high-resolution optical waveform samplers based on a dispersion-flattened highly nonlinear photonic crystal fiber”, Journal of Optics 14, 055201 (9pp) (2012).
    • 19. A. Otani, Y. Tsuda, K. Igawa and K. Shida, “Novel optical sampling oscilloscope using envelope detection triggering method”, J. Lightwave Technol. 26, 2991-2998 (2008).
    • 20. Y.S. Liu and J.-G. Zhang, “Design of low timing-jitter, stable picosecond optical-pulse source by using an uncooled gain-switched Fabry-Perot semiconductor laser with external continuouswave light injection”, Microwave and Optical Technology Letters 53, 2100-2105 (2011).
    • 21. Y. Liu, J.-G. Zhang, G. Chen, W. Zhao and J. Bai, “Low-timing-jitter, stretched-pulse passively mode-locked fiber laser with tunable repetition rate and high operation stability”, Journal of Optics 12, Paper 095204 (6pp) (2010).
    • 22. D. Tang, J.-G. Zhang, and Y. Liu, “Highly stable, passively mode-locked fiber laser with low pump power for subpicosecond pulse generation”, Laser Physics 22, 1586-1589 (2012).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article