Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Parsons, Jonathan; Morris, R. J. H.; Leadley, D. R. (David R.); Parker, Evan H. C.; Fulgoni, D. J. F.; Nash, Lee John (2008)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects: QC, TK
Strain relaxation has been studied in tensile strained silicon layers grown on Si0.5Ge0.5 virtual substrates, for layers many times the critical thickness, using high resolution x-ray diffraction. Layers up to 30 nm thick were found to relax less than 2% by the glide of preexisting 60° dislocations. Relaxation is limited because many of these dislocations dissociate into extended stacking faults that impede the dislocation glide. For thicker layers, nucleated microtwins were observed, which significantly increased relaxation to 14%. All these tensile strained layers are found to be much more stable than layers with comparable compressive strain.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, J. Appl. Phys. 80, 1567 1996 .
    • 2M. Wiatr, T. Feudel, A. Wei, A. Mowry, R. Boschke, P. Javorka, A.
    • Gehring, T. Kammler, M. Lenski, K. Frohberg, R. Richter, M. Horstmann, and D. Greenlaw, Proceedings of the Advanced Thermal Processing of Semiconductors, 2007 unpublished , p. 19.
    • 3J. G. Fiorenza, G. Braithwaite, C. W. Leitz, M. T. Currie, J. Yap, F.
    • Lochtefeld, H. Badawi, and M. T. Bulsara, Semicond. Sci. Technol. 19, L4 2004 .
    • 4J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 1974 .
    • 5R. People and J. C. Bean, Appl. Phys. Lett. 49, 229 1986 .
    • 6J. Parsons, R. H. J. Morris, E. H. C. Parker, D. R. Leadley, T. J. Grasby, and A. D. Capewell, Appl. Phys. Lett. 91, 063127 2007 .
    • 7S. B. Samavedam, W. J. Taylor, J. M. Grant, J. A. Smith, P. J. Tobin, A.
    • Dip, A. M. Philips, and R. Lui, J. Vac. Sci. Technol. B 17, 1424 1999 .
    • 8J. M. Hartmann, A. Abbadie, D. Rouchon, J. P. Barnes, M. Mermoux, and T. Billon, Thin Solid Films 516, 4238 2008 .
    • 9V. D. Archer, J. Electrochem. Soc. 129, 2074 1982 .
    • 10N. Sugii, J. Appl. Phys. 89, 6459 2001 .
    • 11E. Erdtmann and T. A. Langdo, J. Mater. Sci.: Mater. Electron. 17, 137 2006 .
    • 12J. C. Bean, J. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, J.
    • Vac. Sci. Technol. A 2, 436 1984 .
    • 13E. Bugiel and P. Zamseil, Appl. Phys. Lett. 62, 2051 1993 .
    • 14F. K. LeGoues, B. S. Meyerson, J. F. Morar, and P. D. Kirchner, J. Appl.
    • Phys. 71, 4230 1992 .
    • 15R. Hull and J. C. Bean, Germanium Silicon: Physics and Materials Academic, New York, 1999 .
    • 16P. M. J. Marée, J. C. Barbour, J. F. van der Veen, K. L. Kavanaugh, C. W.
    • T. Bulle-Lieuwma, and M. P. A. Viegers, J. Appl. Phys. 62, 4413 1987 .
    • 17M. L. Lee, D. A. Antoniadis, and E. A. Fitzgerald, Thin Solid Films 508, 136 2006 .
    • 18J. Yang, G. W. Neudeck, and J. P. Denton, Appl. Phys. Lett. 77, 4034 2000 .
    • 19W. Wegscheider, K. Eberl, G. Abstreiter, H. Cerva, and H. Oppolzer, Appl. Phys. Lett. 57, 1496 1990 .
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article