LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lamley, Jonathan M.; Iuga, Dinu; Öster, Carl; Sass, Hans Jürgen; Rogowski, Marco; Oss, Andres; Past, Jaan; Reinhold, Andres; Grzesiek, Stephan; Samoson, Ago; Lewandowski, Józef R. (2014)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects: QC, QD
Identifiers:doi:10.1021/ja5069992
NMR spectroscopy is a prime technique for characterizing atomic-resolution structures and dynamics of biomolecular complexes but for such systems faces challenges of sensitivity and spectral resolution. We demonstrate that the application of 1H-detected experiments at magic-angle spinning frequencies of >50 kHz enables the recording, in a matter of minutes to hours, of solid-state NMR spectra suitable for quantitative analysis of protein complexes present in quantities as small as a few nanomoles (tens of micrograms for the observed component). This approach enables direct structure determination and quantitative dynamics measurements in domains of protein complexes with masses of hundreds of kilodaltons. Protein–protein interaction interfaces can be mapped out by comparison of the chemical shifts of proteins within solid-state complexes with those of the same constituent proteins free in solution. We employed this methodology to characterize a >300 kDa complex of GB1 with full-length human immunoglobulin, where we found that sample preparation by simple precipitation yields spectra of exceptional quality, a feature that is likely to be shared with some other precipitating complexes. Finally, we investigated extensions of our methodology to spinning frequencies of up to 100 kHz.\ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Ban, N.; Nissen, P.; Hansen, J.; Moore, P. B.; Steitz, T. A. Science 2000, 289, 905.
    • (2) Garman, E. F. Science 2014, 343, 1102.
    • (3) Leibundgut, M.; Maier, T.; Jenni, S.; Ban, N. Curr. Opin. Struct.
    • Biol. 2008, 18, 714.
    • (4) Frueh, D. P.; Goodrich, A. C.; Mishra, S. H.; Nichols, S. R. Curr.
    • Opin. Struct. Biol. 2013, 23, 734.
    • (5) Zuiderweg, E. R. Biochemistry 2002, 41, 1.
    • (6) Han, Y.; Ahn, J.; Concel, J.; Byeon, I.-J. L.; Gronenborn, A. M.; Yang, J.; Polenova, T. J. Am. Chem. Soc. 2010, 132, 1976.
    • (7) Loquet, A.; Sgourakis, N. G.; Gupta, R.; Giller, K.; Riedel, D.; Goosmann, C.; Griesinger, C.; Kolbe, M.; Baker, D.; Becker, S.; Lange, A. Nature 2012, 486, 276.
    • (8) Carter, P. J. Exp. Cell Res. 2011, 317, 1261.
    • (9) Stone, G. C.; Sjöbring, U.; Björck, L.; Sjöquist, J.; Barber, C. V.; Nardella, F. A. J. Immunol. 1989, 143, 565.
    • (10) Derrick, J. P.; Wigley, D. Nature 1992, 359, 752.
    • (11) Gronenborn, A. M.; Clore, G. M. J. Mol. Biol. 1993, 233, 331.
    • (12) Lian, L.-Y.; Barsukov, I. L.; Derrick, J. P.; Roberts, G. C. Nat.
    • Struct. Mol. Biol. 1994, 1, 355.
    • (13) Bertini, I.; Luchinat, C.; Parigi, G.; Ravera, E.; Reif, B.; Turano, P. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 10396.
    • (14) Mainz, A.; Bardiaux, B.; Kuppler, F.; Multhaup, G.; Felli, I. C.; Pierattelli, R.; Reif, B. J. Biol. Chem. 2012, 287, 1128.
    • (15) Mainz, A.; Jehle, S.; van Rossum, B. J.; Oschkinat, H.; Reif, B. J.
    • Am. Chem. Soc. 2009, 131, 15968.
    • (16) Gardiennet, C.; Schütz, A. K.; Hunkeler, A.; Kunert, B.; Terradot, L.; Böckmann, A.; Meier, B. H. Angew. Chem., Int. Ed. 2012, 51, 7855.
    • (17) Mainz, A.; Religa, T. L.; Sprangers, R.; Linser, R.; Kay, L. E.; Reif, B. Angew. Chem., Int. Ed. 2013, 52, 8746.
    • (18) Gelis, I.; Vitzthum, V.; Dhimole, N.; Caporini, M. A.; Schedlbauer, A.; Carnevale, D.; Connell, S. R.; Fucini, P.; Bodenhausen, G. J. Biomol. NMR 2013, 56, 85.
    • (19) Lewandowski, J. R.; Halse, M. H.; Blackledge, M.; Emsley, L.
    • Submitted 2014.
    • (20) Ishii, Y.; Tycko, R. J. Magn. Reson. 2000, 142, 199.
    • (21) Hologne, M.; Chevelkov, V.; Reif, B. Prog. Nucl. Magn. Reson.
    • Spectrosc. 2006, 48, 211.
    • (22) Zhou, D. H.; Shah, G.; Cormos, M.; Mullen, C.; Sandoz, D.; Rienstra, C. M. J. Am. Chem. Soc. 2007, 129, 11791.
    • (23) Paul, S.; Madhu, P. J. Indian Inst. Sci. 2010, 90, 69.
    • (24) Asami, S.; Szekely, K.; Schanda, P.; Meier, B. H.; Reif, B. J.
    • Biomol. NMR 2012, 54, 155.
    • (25) Lewandowski, J. R.; Dumez, J. N.; Akbey, U.; Lange, S.; Emsley, L.; Oschkinat, H. J. Chem. Phys. Lett. 2011, 2, 2205.
    • (26) Ward, M. E.; Wang, S. L.; Krishnamurthy, S.; Hutchins, H.; Fey, M.; Brown, L. S.; Ladizhansky, V. J. Biomol. NMR 2014, 58, 37.
    • (27) Akbey, U.; Lange, S.; Franks, W. T.; Linser, R.; Rehbein, K.; Diehl, A.; van Rossum, B. J.; Reif, B.; Oschkinat, H. J. Biomol. NMR 2010, 46, 67.
    • (28) Marchetti, A.; Jehle, S.; Felletti, M.; Knight, M. J.; Wang, Y.; Xu, Z. Q.; Park, A. Y.; Otting, G.; Lesage, A.; Emsley, L.; Dixon, N. E.; Pintacuda, G. Angew. Chem., Int. Ed. 2012, 51, 10756.
    • (29) Lewandowski, J. R. Acc. Chem. Res. 2013, 46, 2018.
    • (30) Lewandowski, J. R.; Sass, H. J.; Grzesiek, S.; Blackledge, M.; Emsley, L. J. Am. Chem. Soc. 2011, 133, 16762.
    • (31) Lewandowski, J. R.; Sein, J.; Sass, H. J.; Grzesiek, S.; Blackledge, M.; Emsley, L. J. Am. Chem. Soc. 2010, 132, 8252.
    • (32) Samoson, A. Presented at EUROMAR 2012, Dublin, Ireland, July 1−5, 2012.
    • (33) Wickramasinghe, N. P.; Parthasarathy, S.; Jones, C. R.; Bhardwaj, C.; Long, F.; Kotecha, M.; Mehboob, S.; Fung, L. W. M.; Past, J.; Samoson, A.; Ishii, Y. Nat. Methods 2009, 6, 215.
    • (34) Kato, K.; Lian, L.; Barsukov, I.; Derrick, J. P. Structure 1995, 3, 79.
    • (35) Sauereriksson, A. E.; Kleywegt, G. J.; Uhl, M.; Jones, T. A.
    • Structure 1995, 3, 265.
    • (36) Kmiecik, S.; Kolinski, A. Biophys. J. 2008, 94, 726.
    • (37) Lewandowski, J. R.; van der Wel, P. C. A.; Rigney, M.; Grigorieff, N.; Griffin, R. G. J. Am. Chem. Soc. 2011, 133, 14686.
    • (38) Nielsen, J. T.; Bjerring, M.; Jeppesen, M. D.; Pedersen, R. O.; Pedersen, J. M.; Hein, K. L.; Vosegaard, T.; Skrydstrup, T.; Otzen, D.
    • E.; Nielsen, N. C. Angew. Chem., Int. Ed. 2009, 48, 2118.
    • (39) Harris, L. J.; Skaletsky, E.; McPherson, A. J. Mol. Biol. 1998, 275, 861.
    • (40) Chevelkov, V.; Fink, U.; Reif, B. J. Am. Chem. Soc. 2009, 131, 14018.
    • (41) Giraud, N.; Blackledge, M.; Goldman, M.; Bockmann, A.; Lesage, A.; Penin, F.; Emsley, L. J. Am. Chem. Soc. 2005, 127, 18190.
    • (42) Bertini, I.; Emsley, L.; Lelli, M.; Luchinat, C.; Mao, J.; Pintacuda, G. J. Am. Chem. Soc. 2010, 132, 5558.
    • (43) Demers, J.-P.; Chevelkov, V.; Lange, A. Solid State Nucl. Magn.
    • Reson. 2011, 40, 101.
    • (44) Sakellariou, D.; Le Goff, G.; Jacquinot, J.-F. Nature 2007, 447, 694.
    • (45) Franks, W. T.; Zhou, D. H.; Wylie, B. J.; Money, B. G.; Graesser, D. T.; Frericks, H. L.; Sahota, G.; Rienstra, C. M. J. Am. Chem. Soc.
    • (46) Gullion, T.; Schaefer, J. J. Magn. Reson. 1989, 81, 196.
    • (47) Verel, R.; Baldus, M.; Ernst, M.; Meier, B. H. Chem. Phys. Lett.
    • (48) Kotecha, M.; Wickramasinghe, N. P.; Ishii, Y. Magn. Reson.
    • Chem. 2007, 45, S221.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • RCUK | 100 kHz magic angle spinni...
  • SNSF | Biomacromolecular structur...
  • SNSF | Biomacromolecular structur...

Cite this article