LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Çetin, Serkant Ali; ATLAS Collaboration (2014)
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: scattering [p p], final state [dilepton], scale [mass], leptonic decay [Z0], Particle Physics - Experiment, ATLAS, scalar particle, effective field theory, Constraints, associated production [Z0], Z boson; pp collisions; ATLAS detector, 530, QC, interaction [dark matter], High Energy Physics - Experiment, CERN LHC Coll, missing-energy [transverse momentum], mediation, 8000 GeV-cms, experimental results, LHC, :Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP], search for [dark matter], contact interaction, Science & Technology, :Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP], 530 Physics
ddc: ddc:530

Classified by OpenAIRE into

arxiv: Computer Science::Machine Learning, Computer Science::Mathematical Software, Computer Science::Digital Libraries, Statistics::Machine Learning
A search is presented for production of dark matter particles recoiling against a leptonically decaying $Z$ boson in 20.3 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector at the Large Hadron Collider. Events with large missing transverse momentum and two oppositely-charged electrons or muons consistent with the decay of a $Z$ boson are analyzed. No excess above the Standard Model prediction is observed. Limits are set on the mass scale of the contact interaction as a function of the dark matter particle mass using an effective field theory description of the interaction of dark matter with quarks or with $Z$ bosons. Limits are also set on the coupling and mediator mass of a model in which the interaction is mediated by a scalar particle. A search is presented for production of dark matter particles recoiling against a leptonically decaying Z boson in 20.3 fb$^{-1}$ of pp collisions at $\sqrt{s}$=8 TeV with the ATLAS detector at the Large Hadron Collider. Events with large missing transverse momentum and two oppositely-charged electrons or muons consistent with the decay of a Z boson are analyzed. No excess above the Standard Model prediction is observed. Limits are set on the mass scale of the contact interaction as a function of the dark matter particle mass using an effective field theory description of the interaction of dark matter with quarks or with Z bosons. Limits are also set on the coupling and mediator mass of a model in which the interaction is mediated by a scalar particle.

A search is presented for production of dark-matter particles recoiling against a leptonically decaying Z boson in 20.3fb-1 of pp collisions at s=8TeV with the ATLAS detector at the Large Hadron Collider. Events with large missing transverse momentum and two oppositely charged electrons or muons consistent with the decay of a Z boson are analyzed. No excess above the Standard Model prediction is observed. Limits are set on the mass scale of the contact interaction as a function of the dark-matter particle mass using an effective field theory description of the interaction of dark matter with quarks or with Z bosons. Limits are also set on the coupling and mediator mass of a model in which the interaction is mediated by a scalar particle.

  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] V. Rubin, W. Ford, Jr., and N. Thonnard, Astrophys. J. 238, 471 (1980).
    • [2] E. Komatsu et al., Astrophys. J. Suppl. Ser. 192, 18 (2011).
    • [3] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
    • [4] ATLAS Collaboration, J. High Energy Phys. 04 (2013) 075.
    • [5] CMS Collaboration, J. High Energy Phys. 09 (2012) 094.
    • [6] ATLAS Collaboration, Phys. Rev. Lett. 110, 011802 (2013).
    • [7] CMS Collaboration, Phys. Rev. Lett. 108, 261803 (2012).
    • [8] ATLAS Collaboration, Phys. Rev. Lett. 112, 041802 (2014).
    • [9] ATLAS Collaboration, Phys. Rev. Lett. 112, 201802 (2014).
    • [10] J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. M. P. Tait, and H. B. Yu, Phys. Rev. D 82, 116010 (2010).
    • [11] M. Beltran, D. Hooper, E. W. Kolb, Z. A. C. Krusberge, and T. M. P. Tait, J. High Energy Phys. 09 (2010) 037.
    • [12] P. J. Fox, R. Harnik, J. Kopp, and Y. Tsai, Phys. Rev. D 85, 056011 (2012).
    • [13] L. Carpenter, A. Nelson, C. Shimmin, T. Tait, and D. Whiteson, Phys. Rev. D 87, 074005 (2013).
    • [14] R. Cotta, J. L. Hewett, M. P. Le, and T. G. Rizzo, Phys. Rev. D 88, 116009 (2013).
    • [15] H. M. Lee, M. Park, and V. Sanz, J. High Energy Phys. 03 (2013) 052.
    • [16] G. Busoni, A. De Simone, E. Morgante, and A. Riotto, Phys. Lett. B 728, 412 (2014).
    • [17] N. Bell, J. Dent, A. Galea, T. Jacques, L. Krauss, and T. Weiler, Phys. Rev. D 86, 096011 (2012).
    • [18] ATLAS Collaboration, JINST 3, S08003 (2008).
    • [19] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates ðr; ϕÞ are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η ¼ − ln tanðθ=2Þ.
    • [20] ATLAS Collaboration, Eur. Phys. J. C 72, 1909 (2012).
    • [21] M. Cacciari, G. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 063.
    • [22] ATLAS Collaboration, Report No. ATL-LARG-PUB-2008- 002, 2008, https://cds.cern.ch/record/1099735.
    • [23] ATLAS Collaboration, Eur. Phys. J. C 72, 1844 (2012).
    • [24] T. Melia, P. Nason, R. Rontsch, and G. Zanderighi, J. High Energy Phys. 11 (2011) 078.
    • [25] J. M. Campbell, R. K. Ellis, and C. Williams, J. High Energy Phys. 07 (2011) 18.
    • [26] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C.-P. Yuan, Phys. Rev. D 82, 074024 (2010).
    • [27] T. Sjostrand, S. Mrenna, and P. Z. Skands, Comput. Phys. Commun. 178, 852 (2008).
    • [28] ATLAS Collaboration, Report No. ATL-PHYS-PUB-2012- 003, 2012, https://cdsweb.cern.ch/record/1474107.
    • [29] P. Golonka and Z. Was, Eur. Phys. J. C 45, 97 (2006).
    • [30] ATLAS Collaboration, Eur. Phys. J. C 70, 823 (2010).
    • [31] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
    • [32] ATLAS Collaboration, Phys. Lett. B 719, 299 (2013).
    • [33] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, J. High Energy Phys. 06 (2011) 128.
    • [34] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009).
    • [35] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, and J. Winter, J. High Energy Phys. 02 (2009) 007.
    • [36] ATLAS Collaboration, Eur. Phys. J. C 73, 2518 (2013).
    • [37] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Eur. Phys. J. C 71, 1554 (2011).
    • [38] E. Behnke et al. (COUPP Collaboration), Phys. Rev. D 86, 052001 (2012).
    • [39] M. Felizardo et al. (SIMPLE Collaboration), Phys. Rev. Lett. 108, 201302 (2012).
    • [40] S. Archambault et al. (PICASSO Collaboration), Phys. Lett. B 711, 153 (2012).
    • [41] M. G. Aartsen et al. (IceCube Collaboration), Phys. Rev. Lett. 110, 131302 (2013).
    • [42] C. E. Aalseth et al. (CoGeNT Collaboration), Phys. Rev. Lett. 106, 131301 (2011).
    • [43] E. Aprile et al. (XENON100 Collaboration), Phys. Rev. Lett. 109, 181301 (2012).
    • [44] R. Agnese et al. (SuperCDMS Collaboration), Phys. Rev. Lett. 112, 041302 (2014).
    • [45] R. Agnese et al. (SuperCDMS Collaboration), arXiv:1402.7137 [Phys. Rev. Lett. (to be published)].
    • [46] D. S. Akerib et al. (LUX Collaboration), Phys. Rev. Lett. 112, 091303 (2014).
    • [47] G. Steigman, B. Dasgupta, and J. F. Beacom, Phys. Rev. D 86, 023506 (2012).
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    70
    70%
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | EPLANET
  • SNSF | Teilchenphysik-Experimente...

Related to

  • egiEGI virtual organizations: atlas

Cite this article