LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Xu, Mai; Dong, Haoyu; Chen, Chen; Li, Ling (2016)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: Q1, Q335

Classified by OpenAIRE into

arxiv: Computer Science::Computer Vision and Pattern Recognition, Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing), Computer Science::Machine Learning
ACM Ref: ComputingMethodologies_PATTERNRECOGNITION
In this paper, we propose a novel Fisher discriminant unsupervised dictionary learning (FD-UDL) approach, for improving the clustering performance of state-of-the-art dictionary learning approaches in unsupervised scenarios. This is achieved by employing a novel Fisher discriminant criterion on dictionary elements to encourage the diversity between different sub-dictionaries, and also the coherence within each sub-dictionary. Such a discriminant is incorporated to formulate the optimization problem of unsupervised dictionary learning. Furthermore, we provide an analytical solution to the proposed optimization problem, obtaining the learned dictionary for clustering tasks. Unlike previous approaches for unsupervised clustering, the proposed FD-UDL approach takes into account both within-class and between-class scatters of sub-dictionaries, rather than only considering diversity between different sub-dictionaries. Finally, experiments on synthetic data, face and handwritten digit clustering tasks show the improved clustering accuracy over other state-of-the-art dictionary learning and clustering approaches.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article