LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Růžička, Štěpán; Allen, M. P. (2014)
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: QC
Virtual move Monte Carlo (VMMC) is a cluster algorithm which was originally developed for strongly attractive colloidal, molecular or atomistic systems in order to both approximate the collective dynamics and avoid sampling of unphysical kinetic traps. In this paper, we present the algorithm in the form, which selects the moving cluster through a wider class of virtual states, and which is applicable to general pairwise interactions, including hard-core repulsion. The newly proposed way of selecting the cluster increases the acceptance probability by up to several orders of magnitude especially for rotational moves. The results have their applications in simulations of systems interacting via anisotropic potentials both to enhance the sampling of the phase space and to approximate the dynamics.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] P. F. Damasceno, M. Engel, and S. C. Glotzer, Science 337, 453 (2012).
    • [2] F. Romano, C. De Michele, D. Marenduzzo, and E. Sanz, J. Chem. Phys. 135, 124106 (2011).
    • [3] S. Whitelam, Mol. Simulat. 37, 606 (2011).
    • [4] S. Plimpton, J. Comp. Phys. 117, 1 (1995); http://lammps.sandia.gov
    • [5] J. M. Ilnytskyi and M. R. Wilson, Comp. Phys. Comm. 134, 23 (2001).
    • [6] J. A. Anderson, C. D. Lorenz, and A. Travesset, J. Comp. Phys. 227, 5342 (2008); http://codeblue.umich.edu/hoomd-blue
    • [7] C. De Michele, J. Comput. Phys. 229, 3276 (2010).
    • [8] M. P. Allen and D. Quigley, Mol. Phys. 111, 3442 (2013).
    • [9] D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Pr, 2nd ed., 2002).
    • [10] E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704 (2011).
    • [11] F. Smallenburg, L. Filion, M. Marechal, and M. Dijkstra, Proc. Natl. Acad. Sci. (USA) 109, 17886 (2012).
    • [12] P. R. ten Wolde and D. Frenkel, Science 277, 1975 (1997).
    • [13] T. Perez, Y. Liu, W. Li, J. D. Gunton, and A. Chakrabarti, Langmuir 27, 11401 (2011).
    • [14] F. Sciortino, S. Mossa, E. Zaccarelli, and P. Tartaglia, Phys. Rev. Lett. 93, 055701 (2004).
    • [15] E. Mani, W. Lechner, W. K. Kegel, and P. G. Bolhuis, Soft Matter 10, 4479 (2014).
    • [16] Y. Xia, T. D. Nguyen, M. Yang, B. Lee, A. Santos, P. Podsiadlo, Z. Tang, S. C. Glotzer, and N. A. Kotov, Nat. Nanotechnol. 6, 580 (2011).
    • [17] M. B. Sweatman, R. Fartaria, and L. Lue, J. Chem. Phys. 140, 124508 (2014).
    • [18] A. Jaster, Phys. A 264, 134 (1999).
    • [19] E. P. Bernard, W. Krauth, and D. B. Wilson, Phys. Rev. E 80, 056704 (2009).
    • [20] E. A. J. F. Peters and G. de With, Phys. Rev. E 85, 026703 (2012).
    • [21] C. Dress and W. Krauth, J. Phys. A: Math. Gen. 28, 597 (1995).
    • [22] J. W. Liu and E. Luijten, Phys. Rev. Lett. 92, 035504 (2004).
    • [23] D. Sinkovits, S. Barr, and E. Luijten, J. Chem. Phys. 136, 144111 (2012).
    • [24] S. Whitelam and P. L. Geissler, J. Chem. Phys. 127, 154101 (2007).
    • [25] S. Whitelam and P. L. Geissler, J. Chem. Phys. 128, 219901 (2008).
    • [26] S. Whitelam, E. H. Feng, M. F. Hagan, and P. L. Geissler, Soft Matter 5, 1251 (2009).
    • [27] S. Ruzicka and M. P. Allen, Phys. Rev. E 89, 033307 (2014).
    • [28] D. Wu, D. Chandler, and B. Smit, J. Phys. Chem. 96, 4077 (1992).
    • [29] A. Troisi, V. Wong, and M. A. Ratner, J. Chem. Phys. 122, 024102 (2005).
    • [30] A. Bhattacharyay and A. Troisi, Chem. Phys. Lett. 458, 210 (2008).
    • [31] S. Babu, J.-C. Gimel, T. Nicolai, and C. De Michele, J. Chem. Phys. 128, 204504 (2008).
    • [32] R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 58, 86 (1987).
    • [33] F. Niedermayer, Phys. Rev. Lett. 61, 2026 (1988).
    • [34] U. Wol , Phys. Rev. Lett. 62, 361 (1989).
    • [35] W. Krauth, Algorithms and Computations (Oxford University Press, 2006).
    • [36] J. W. Liu and E. Luijten, Phys. Rev. E 71, 066701 (2005).
    • [37] D. Frenkel, Proc. Natl. Acad. Sci. (USA) 101, 17571 (2004).
    • [38] G. A. Vliegenthart, J. F. M. Lodge, and H. N. W. Lekkerkerker, Phys. A 263, 378 (1999).
    • [39] A. de Candia, E. Del Gado, A. Fierro, N. Sator, and A. Coniglio, Phys. A 358, 239 (2005).
    • [40] E. Zaccarelli, J. Phys.: Condens. Matter 19, 323101 (2007).
    • [41] J. Kaupuzs, J. Rimsans, and R. V. N. Melnik, Phys. Rev. E 81, 026701 (2010).
    • [42] E. Sanz and D. Marenduzzo, J. Chem. Phys. 132, 194102 (2010).
    • [43] D. Klotsa and R. L. Jack, Soft Matter 7, 6294 (2011).
    • [44] L. O. Hedges and S. Whitelam, J. Chem. Phys. 135, 164602 (2011).
    • [45] E. R. Leite and C. Ribeiro, Crystallization and Growth of Colloidal Nanocrystals (Springer, 2012).
    • 2. Take a random number x from the uniform distribution U (0; 1). De ne the maximum cluster size as NC = NINT(1=x), where NINT is the nearest integer function.
    • 3. Perform the iterative loop selecting all other particles to C.
    • (a) Pick a random pair (i; j), i 2 C, j 2= C, which interacts in one of the states (10), and to which a link has not yet been proposed. If no such pair exists, nish the cluster selection by exiting the iterative loop.
    • 4. Identify the boundary B as those pairs i 2 C, j 2= C, which interact in at least one of the states (x; y), (M x; y), (x; M y) or (M x; M 1y), and which were not forced to fail by the condition in point 3(b).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article