Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pedro Saramago; Beth Woods; Helen Weatherly; Andrea Manca; Mark Sculpher; Kamran Khan; Andrew J. Vickers; Hugh MacPherson (2016)
Publisher: BioMed Central
Journal: BMC Medical Research Methodology
Languages: English
Types: Article
Subjects: Research Article, R5-920, Medicine (General), Continuous outcome, Individual-patient data, Evidence synthesis, Mixed treatment comparisons, Network meta-analysis, Analysis of covariance, Heterogeneity, R1
Background Network meta-analysis methods, which are an extension of the standard pair-wise synthesis framework, allow for the simultaneous comparison of multiple interventions and consideration of the entire body of evidence in a single statistical model. There are well-established advantages to using individual patient data to perform network meta-analysis and methods for network meta-analysis of individual patient data have already been developed for dichotomous and time-to-event data. This paper describes appropriate methods for the network meta-analysis of individual patient data on continuous outcomes. Methods This paper introduces and describes network meta-analysis of individual patient data models for continuous outcomes using the analysis of covariance framework. Comparisons are made between this approach and change score and final score only approaches, which are frequently used and have been proposed in the methodological literature. A motivating example on the effectiveness of acupuncture for chronic pain is used to demonstrate the methods. Individual patient data on 28 randomised controlled trials were synthesised. Consistency of endpoints across the evidence base was obtained through standardisation and mapping exercises. Results Individual patient data availability avoided the use of non-baseline-adjusted models, allowing instead for analysis of covariance models to be applied and thus improving the precision of treatment effect estimates while adjusting for baseline imbalance. Conclusions The network meta-analysis of individual patient data using the analysis of covariance approach is advocated to be the most appropriate modelling approach for network meta-analysis of continuous outcomes, particularly in the presence of baseline imbalance. Further methods developments are required to address the challenge of analysing aggregate level data in the presence of baseline imbalance. Electronic supplementary material The online version of this article (doi:10.1186/s12874-016-0224-1) contains supplementary material, which is available to authorized users.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Lu G, Ades A, Sutton A, Cooper N, Briggs A, Caldwell D. Meta-analysis of mixed treatment comparisons at multiple follow-up times. Stat Med. 2007;26(20):3681-99.
    • 2. Lumley T. Network meta-analysis for indirect treatment comparisons. Stat Med. 2002;21(16):2313-24.
    • 3. Lu G, Ades A. Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med. 2004;23(20):3105-24.
    • 4. Ades A, Sculpher M, Sutton A, Abrams K, Cooper N, Welton N, Lu G. Bayesian methods for evidence synthesis in cost-effectiveness analysis. Pharmacoeconomics. 2006;24(1):1-19.
    • 5. Riley RD, Simmonds MC, Look MP. Evidence synthesis combining individual patient data and aggregate data: a systematic review identified current practice and possible methods. J Clin Epidemiol. 2007;60(5):431-9.
    • 6. Riley RD, Dodd SR, Craig JV, Thompson JR, Williamson PR. Meta-analysis of diagnostic test studies using individual patient data and aggregate data. Stat Med. 2008;27(29):6111-36.
    • 7. Riley RD, Lambert PC, Staessen JA, Wang J, Gueyffier F, Thijs L, Boutitie F. Meta-analysis of continuous outcomes combining individual patient data and aggregate data. Stat Med. 2008;27(11):1870-93.
    • 8. Sutton A, Kendrick D, Coupland C. Meta-analysis of individual- and aggregate-level data. Stat Med. 2008;27(5):651-69.
    • 9. Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. Brit Med J. 2010;340:c221.
    • 10. Saramago P, Sutton A, Cooper N, Manca A. Mixed treatment comparisons using aggregate and individual participant level data. Stat Med. 2012;31(28):3516-36.
    • 11. Dias S, Welton N, Caldwell D, Ades A. Checking consistency in mixed treatment comparison meta-analysis. Stat Med. 2010;29(7-8):932-44.
    • 12. Donegan S, Williamson P, D'Alessandro U, Smith CT. Assessing the consistency assumption by exploring treatment by covariate interactions in mixed treatment comparison meta-analysis: individual patient-level covariates versus aggregate trial-level covariates. Stat Med. 2012;31(29): 3840-57.
    • 13. Saramago P, Manca A, Sutton A. Deriving input parameters for cost-effectiveness modeling: Taxonomy of data types and approaches to their statistical synthesis. Value Health. 2012;15(5):639-49.
    • 14. Saramago P, Chuang LH, Soares MO. Network meta-analysis of (individual patient) time to event data alongside (aggregate) count data. BMC Med Res Methodol. 2014;14:105.
    • 15. Hong H, Fu H, Price KL, Carlin BP. Incorporation of individual-patient data in network meta-analysis for multiple continuous endpoints, with application to diabetes treatment. Stat Med. 2015;34(20):2794-819.
    • 16. Thom HH, Capkun G, Cerulli A, Nixon RM, Howard LS. Network meta-analysis combining individual patient and aggregate data from a mixture of study designs with an application to pulmonary arterial hypertension. BMC Med Res Methodol. 2015;15:34.
    • 17. Deeks JJ, Higgins JPT, Altman DG. Chapter 9: analysing data and undertaking meta-analyses. In: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions version 5.0.1 [updated September 2008]. The Cochrane Collaboration; 2008. Available from www. handbook.cochrane.org.
    • 18. Fu R, Vandermeer BW, Shamliyan TA, O'Neil ME, Yazdi F, Fox SH, Morton SC. Handling Continuous Outcomes. In: Quantitative Synthesis. Methods Guide for Comparative Effectiveness Reviews. (Prepared by the Oregon Evidencebased Practice Center under Contract No. 290-2007-10057-I.) AHRQ Publication No. 13-EHC103-EF. Rockville, MD: Agency for Healthcare Research and Quality. July 2013. Available from www.effectivehealthcare. ahrq.gov/reports/final.cfm
    • 19. Vickers A, Altman D. Analysing controlled trials with baseline and follow up measurements. Brit Med J. 2001;323(7321):1123-4.
    • 20. Dias S, Welton NJ, Sutton AJ, Ades AE. NICE DSU Technical Support Document 2: A generalised linear modelling framework for pairwise and network meta-analysis of randomised controlled trials. NICE; 2011. Available from http://www.nicedsu.org.uk/.
    • 21. Higgins J, Green S. Cochrane handbook for systematic reviews of interventions, Version 5.1.0 [updated March 2011]. edn. Oxford: Wiley-Blackwell; 2011.
    • 22. Riley R, Kauser I, Bland M, Thijs L, Staessen J, Wang J, Gueyffier F, Deeks J. Meta-analysis of randomised trials with a continuous outcome according to baseline imbalance and availability of individual participant data. Stat Med. 2013;32(16):2747-66.
    • 23. Scott D, Boye K, Timlin L, Clark J, Best J. A network meta-analysis to compare glycaemic control in patients with type 2 diabetes treated with exenatide once weekly or liraglutide once daily in comparison with insulin glargine, exenatide twice daily or placebo. Diabetes Obes Metab. 2013;15(3):213-23.
    • 24. Cooper N, Sutton A, Lu G, Khunti K. Mixed comparison of stroke prevention treatments in individuals with nonrheumatic atrial fibrillation. Arch Intern Med. 2006;166(12):1269-75.
    • 25. Nikolakopoulou A, Chaimani A, Veroniki A, Vasiliadis H, Schmid C, Salanti G. Characteristics of networks of interventions: a description of a database of 186 published networks. Plos One. 2014;9(1):e86754.
    • 26. NICE. NICE guideline on low back pain: early management of persistent non-specific low back pain. 2009.
    • 27. NICE. NICE guideline on diagnosis and management of headaches in young people and adults. 2012.
    • 28. NICE. NICE guideline on osteoarthritis: the care and management of osteoarthritis in adults. 2014.
    • 29. Latimer N. NICE guideline on osteoarthritis: is it fair to acupuncture? Yes. Acupunct Med. 2009;27(2):72-5.
    • 30. Latimer NR, Bhanu AC, Whitehurst DG. Inconsistencies in NICE guidance for acupuncture: reanalysis and discussion. Acupunct Med. 2012;30(3):182-6.
    • 31. Cummings M. Why recommend acupuncture for low back pain but not for osteoarthritis? A commentary on recent NICE guidelines. Acupunct Med. 2009;27(3):128-9.
    • 32. White A. NICE guideline on osteoarthritis: is it fair to acupuncture? No. Acupunct Med. 2009;27(2):70-2.
    • 33. MacPherson H, Vickers A, Bland B, Torgerson D, Corbett M, Spackman E, Saramago P, Woods B, Sculpher M, Manca A, et al. Acupuncture for chronic pain and depression in primary care: a programme of research. NIHR J. 2016. (in press).
    • 34. Vickers AJ, Cronin AM, Maschino AC, Lewith G, Macpherson H, Victor N, Sherman KJ, Witt C, Linde K. Individual patient data meta-analysis of acupuncture for chronic pain: protocol of the Acupuncture Trialists' Collaboration. Trials. 2010;11:90.
    • 35. Vickers AJ, Cronin AM, Maschino AC, Lewith G, MacPherson H, Foster NE, Sherman KJ, Witt CM, Linde K. Acupuncture for chronic pain: individual patient data meta-analysis. Arch Intern Med. 2012;172(19):1444-53.
    • 36. Berman BM, Lao L, Langenberg P, Lee WL, Gilpin AM, Hochberg MC. Effectiveness of acupuncture as adjunctive therapy in osteoarthritis of the knee: a randomized, controlled trial. Ann Intern Med. 2004;141(12):901-10.
    • 37. Vas J, Mendez C, Perea-Milla E, Vega E, Panadero MD, Leon JM, Borge MA, Gaspar O, Sanchez-Rodriguez F, Aguilar I, et al. Acupuncture as a complementary therapy to the pharmacological treatment of osteoarthritis of the knee: randomised controlled trial. BMJ. 2004;329(7476):1216.
    • 38. Witt C, Brinkhaus B, Jena S, Linde K, Streng A, Wagenpfeil S, Hummelsberger J, Walther HU, Melchart D, Willich SN. Acupuncture in patients with osteoarthritis of the knee: a randomised trial. Lancet. 2005;366(9480):136-43.
    • 39. Scharf HP, Mansmann U, Streitberger K, Witte S, Kramer J, Maier C, Trampisch HJ, Victor N. Acupuncture and knee osteoarthritis: a three-armed randomized trial. Ann Intern Med. 2006;145(1):12-20.
    • 40. Witt CM, Jena S, Brinkhaus B, Liecker B, Wegscheider K, Willich SN. Acupuncture in patients with osteoarthritis of the knee or hip: a randomized, controlled trial with an additional nonrandomized arm. Arthritis Rheum. 2006;54(11):3485-93.
    • 41. Foster NE, Thomas E, Barlas P, Hill JC, Young J, Mason E, Hay EM. Acupuncture as an adjunct to exercise based physiotherapy for osteoarthritis of the knee: randomised controlled trial. BMJ. 2007;335(7617):436.
    • 42. Williamson L, Wyatt MR, Yein K, Melton JT. Severe knee osteoarthritis: a randomized controlled trial of acupuncture, physiotherapy (supervised exercise) and standard management for patients awaiting knee replacement. Rheumatology (Oxford). 2007;46(9):1445-9.
    • 43. Vickers AJ, Rees RW, Zollman CE, McCarney R, Smith CM, Ellis N, Fisher P, Van Haselen R, Wonderling D, Grieve R. Acupuncture of chronic headache disorders in primary care: randomised controlled trial and economic analysis. Health Technol Assess. 2004;8(48):iii. 1-35.
    • 44. Linde K, Streng A, Jurgens S, Hoppe A, Brinkhaus B, Witt C, Wagenpfeil S, Pfaffenrath V, Hammes MG, Weidenhammer W, et al. Acupuncture for patients with migraine: a randomized controlled trial. JAMA. 2005;293(17):2118-25.
    • 45. Melchart D, Streng A, Hoppe A, Brinkhaus B, Witt C, Wagenpfeil S, Pfaffenrath V, Hammes M, Hummelsberger J, Irnich D, et al. Acupuncture in patients with tension-type headache: randomised controlled trial. BMJ. 2005;331(7513):376-82.
    • 46. Diener HC, Kronfeld K, Boewing G, Lungenhausen M, Maier C, Molsberger A, Tegenthoff M, Trampisch HJ, Zenz M, Meinert R. Efficacy of acupuncture for the prophylaxis of migraine: a multicentre randomised controlled clinical trial. Lancet Neurol. 2006;5(4):310-6.
    • 47. Endres HG, Bowing G, Diener HC, Lange S, Maier C, Molsberger A, Zenz M, Vickers AJ, Tegenthoff M. Acupuncture for tension-type headache: a multicentre, sham-controlled, patient-and observer-blinded, randomised trial. J Headache Pain. 2007;8(5):306-14.
    • 48. Jena S, Witt CM, Brinkhaus B, Wegscheider K, Willich SN. Acupuncture in patients with headache. Cephalalgia. 2008;28(9):969-79.
    • 49. Kleinhenz J, Streitberger K, Windeler J, Gussbacher A, Mavridis G, Martin E. Randomised clinical trial comparing the effects of acupuncture and a newly designed placebo needle in rotator cuff tendinitis. Pain. 1999;83(2):235-41.
    • 50. Carlsson CP, Sjolund BH. Acupuncture for chronic low back pain: a randomized placebo-controlled study with long-term follow-up. Clin J Pain. 2001;17(4):296-305.
    • 51. Irnich D, Behrens N, Molzen H, Konig A, Gleditsch J, Krauss M, Natalis M, Senn E, Beyer A, Schops P. Randomised trial of acupuncture compared with conventional massage and “sham” laser acupuncture for treatment of chronic neck pain. BMJ. 2001;322(7302):1574-8.
    • 52. Kerr DP, Walsh DM, Baxter D. Acupuncture in the management of chronic low back pain: a blinded randomized controlled trial. Clin J Pain. 2003;19(6):364-70.
    • 53. de Hoyos JA G, Andres Martin Mdel C, Bassas y Baena de Leon E, Vigara Lopez M, Molina Lopez T, Verdugo Morilla FA, Gonzalez Moreno MJ. Randomised trial of long term effect of acupuncture for shoulder pain. Pain. 2004;112(3):289-98.
    • 54. White P, Lewith G, Prescott P, Conway J. Acupuncture versus placebo for the treatment of chronic mechanical neck pain: a randomized, controlled trial. Ann Intern Med. 2004;141(12):911-9.
    • 55. Brinkhaus B, Witt CM, Jena S, Linde K, Streng A, Wagenpfeil S, Irnich D, Walther HU, Melchart D, Willich SN. Acupuncture in patients with chronic low back pain: a randomized controlled trial. Arch Intern Med. 2006;166(4):450-7.
    • 56. Salter GC, Roman M, Bland MJ, MacPherson H. Acupuncture for chronic neck pain: a pilot for a randomised controlled trial. BMC Musculoskelet Disord. 2006;7:99.
    • 57. Vas J, Perea-Milla E, Mendez C, Sanchez Navarro C, Leon Rubio JM, Brioso M, Garcia Obrero I. Efficacy and safety of acupuncture for chronic uncomplicated neck pain: a randomised controlled study. Pain. 2006;126(1-3):245-55.
    • 58. Thomas KJ, MacPherson H, Ratcliffe J, Thorpe L, Brazier J, Campbell M, Fitter M, Roman M, Walters S, Nicholl JP. Longer term clinical and economic benefits of offering acupuncture care to patients with chronic low back pain. Health Technol Assess. 2005;9(32):iii−+.
    • 59. Witt CM, Jena S, Brinkhaus B, Liecker B, Wegscheider K, Willich SN. Acupuncture for patients with chronic neck pain. Pain. 2006;125(1-2):98-106.
    • 60. Witt CM, Jena S, Selim D, Brinkhaus B, Reinhold T, Wruck K, Liecker B, Linde K, Wegscheider K, Willich SN. Pragmatic randomized trial evaluating the clinical and economic effectiveness of acupuncture for chronic low back pain. Am J Epidemiol. 2006;164(5):487-96.
    • 61. Haake M, Muller HH, Schade-Brittinger C, Basler HD, Schafer H, Maier C, Endres HG, Trampisch HJ, Molsberger A. German Acupuncture Trials (GERAC) for chronic low back pain: randomized, multicenter, blinded, parallel-group trial with 3 groups. Arch Intern Med. 2007;167(17):1892-8.
    • 62. Kennedy S, Baxter GD, Kerr DP, Bradbury I, Park J, McDonough SM. Acupuncture for acute non-specific low back pain: a pilot randomised non-penetrating sham controlled trial. Complement Ther Med. 2008;16(3):139-46.
    • 63. Vas J, Ortega C, Olmo V, Perez-Fernandez F, Hernandez L, Medina I, Seminario JM, Herrera A, Luna F, Perea-Milla E, et al. Single-point acupuncture and physiotherapy for the treatment of painful shoulder: a multicentre randomized controlled trial. Rheumatology (Oxford). 2008;47(6):887-93.
    • 64. Dias S, Sutton AJ, Ades AE, Welton NJ. Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med Decis Making. 2013;33(5):607-17.
    • 65. Takeshima N, Sozu T, Tajika A, Ogawa Y, Hayasaka Y, Furukawa TA. Which is more generalizable, powerful and interpretable in meta-analyses, mean difference or standardized mean difference? BMC Med Res Methodol. 2014;14:30.
    • 66. Brooks R, De Charro F. EuroQol: The current state of play. Health Policy. 1996;37(1):53-72.
    • 67. Williams A. Euroqol - a New Facility for the Measurement of Health-Related Quality-of-Life. Health Policy. 1990;16(3):199-208.
    • 68. NICE. Guide to the methods of technology appraisal. London: National Institute for Health and Clinical Excellence, Institute's Decision Support Unit; 2013.
    • 69. Kind P, Hardman G, Macran S. UK Population Norms for EQ-5D. In: Centre for Health Economics. 1999.
    • 70. Gray A, Rivero-Arias O, Clarke P. Estimating the association between SF-12 responses and EQ-5D utility values by response mapping. Med Decis Mak. 2006;26(1):18-29.
    • 71. Rowen D, Brazier J, Roberts J. Mapping SF-36 onto the EQ-5D index: how reliable is the relationship? Health and Quality of Life Outcomes. 2009;7(1):1-9.
    • 72. Maund E, Craig D, Suekarran S, Neilson A, Wright K, Brealey S, Dennis L, Goodchild L, Hanchard N, Rangan A, et al. Management of frozen shoulder: a systematic review and cost-effectiveness analysis. Health Technol Assess. 2012;16(11):i-xvi+1-243.
    • 73. Barton G, Sach T, Jenkinson C, Avery A, Doherty M, Muir K. Do estimates of cost-utility based on the EQ-5D differ from those based on the mapping of utility scores? Health Qual Life Outcomes. 2008;6:51.
    • 74. Khan K. Mapping outcomes data to estimate health state utilities: An analysis of individual patient level data from 15 acupuncture trials. Department of Economics and Related Studies. UK: University of York, 2011.
    • 75. Chan KK, Willan AR, Gupta M, Pullenayegum E. Underestimation of uncertainties in health utilities derived from mapping algorithms involving health-related quality-of-life measures: statistical explanations and potential remedies. Med Decis Making. 2014;34(7):863-72.
    • 76. Trowman R, Dumville JC, Torgerson DJ, Cranny G. The impact of trial baseline imbalances should be considered in systematic reviews: a methodological case study. J Clin Epidemiol. 2007;60(12):1229-33.
    • 77. Aiello F, Attanasio M, Tine F. Assessing covariate imbalance in meta-analysis studies. Stat Med. 2011;30(22):2671-82.
    • 78. Lu GB, Ades AE. Assessing evidence inconsistency in mixed treatment comparisons. J Am Stat Assoc. 2006;101(474):447-59.
    • 79. Higgins J, Whitehead A, Turner R, Omar R, Thompson S. Meta-analysis of continuous outcome data from individual patients. Stat Med. 2001;20(15):2219-41.
    • 80. Senn S. Change from baseline and analysis of covariance revisited. Stat Med. 2006;25(24):4334-44.
    • 81. Van Breukelen GJ. ANCOVA versus change from baseline: more power in randomized studies, more bias in nonrandomized studies [corrected]. J Clin Epidemiol. 2006;59(9):920-5.
    • 82. Cooper N, Sutton A, Morris D, Ades A, Welton N. Addressing between-study heterogeneity and inconsistency in mixed treatment comparisons: Application to stroke prevention treatments in individuals with non-rheumatic atrial fibrillation. Stat Med. 2009;28(14):1861-81.
    • 83. Turner RM, Spiegelhalter DJ, Smith GC, Thompson SG. Bias modelling in evidence synthesis. J R Stat Soc Ser A Stat Soc. 2009;172(1):21-47.
    • 84. Spiegelhalter DJ, Best NG, Carlin BR, van der Linde A. Bayesian measures of model complexity and fit. J Roy Stat Soc B. 2002;64:583-616.
    • 85. Welton NJ, Sutton AJ, Cooper NJ, Abrams KR, Ades AE. Evidence synthesis for decision making in healthcare. First Edition, 2012. John Wiley & Sons, Ltd.
    • 86. Team RC. In: Computing RFfS, editor. R: a language and environment for statistical computing. Austria; 2014.
    • 87. Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS - a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput. 2000;10(4):325-37.
    • 88. Sturtz S, Ligges U, Gelman A. R2WinBUGS: a package for running WinBUGS from R. J Stat Softw. 2005;12(3):1-16.
    • 89. Plummer M, Nicky B, Cowles K, Vines K. CODA: convergence diagnosis and output analysis for MCMC. R News. 2006;6(1):7.
    • 90. Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992;7(4):457-72.
    • 91. Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. J Comput Graph Stat. 1998;7(4):434-55.
    • 92. Donegan S, Williamson P, D'Alessandro U, Garner P, Smith CT. Combining individual patient data and aggregate data in mixed treatment comparison meta-analysis: Individual patient data may be beneficial if only for a subset of trials. Stat Med. 2013;32(6):914-30.
    • 93. Cherkin D, Eisenberg D, Sherman K, Barlow W, Kaptchuk T, Street J, Deyo R. Randomized trial comparing traditional Chinese medical acupuncture, therapeutic massage, and self-care education for chronic low back pain. Arch Intern Med. 2001;161(8):1081-8.
    • 94. Vickers AJ, Rees RW, Zollman CE, McCarney R, Smith CM, Ellis N, Fisher P, Van Haselen R. Acupuncture for chronic headache in primary care: large, pragmatic, randomised trial. BMJ. 2004;328(7442):744.
    • 95. Thomas K, MacPherson H, Thorpe L, Brazier J, Fitter M, Campbell M, Roman M, Walters S, Nicholl J. Randomised controlled trial of a short course of traditional acupuncture compared with usual care for persistent non-specific low back pain. Brit Med J. 2006;333(7569):623-6.
    • 96. Mavridis D, White I, Higgins J, Cipriani A, Salanti G. Allowing for uncertainty due to missing continuous outcome data in pairwise and network meta-analysis. Stat Med. 2014;34(5):721-41.
    • 97. Bujkiewicz S, Thompson J, Sutton A, Cooper N, Harrison M, Symmons D, Abrams K. Multivariate meta-analysis of mixed outcomes: a Bayesian approach. Stat Med. 2013;32(22):3926-43.
    • 98. Bujkiewicz S, Thompson JR, Sutton AJ, Cooper NJ, Harrison MJ, Symmons DP, Abrams KR. Use of Bayesian multivariate meta-analysis to estimate the HAQ for mapping onto the EQ-5D questionnaire in rheumatoid arthritis. Value Health. 2014;17(1):109-15.
    • 99. Achana FA, Cooper NJ, Bujkiewicz S, Hubbard SJ, Kendrick D, Jones DR, Sutton AJ. Network meta-analysis of multiple outcome measures accounting for borrowing of information across outcomes. BMC Med Res Methodol. 2014;14:92.
    • 100. Bujkiewicz S, Thompson JR, Riley RD, Abrams KR. Bayesian meta-analytical methods to incorporate multiple surrogate endpoints in drug development process. Stat Med. 2016;35(7):1063-89.
    • 101. Jenkins D, Martina R, Bujkiewicz S, Dequen P, Abrams K. Network Meta-Analysis of Biological Response Modifiers in Rheumatoid arthritis Including real World Evidence at Multiple time Points. Value Health. 2015;18(7):A343.
    • 102. Tudor Smith C, Dwan K, Altman D, Clarke M, Riley R, Williamson PR. Sharing individual participant data from clinical trials: an opinion survey regarding the establishment of a central repository. Plos One. 2014;9(5):e97886.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Related to

  • egiEGI virtual organizations: cms

Cite this article