LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rankin, R.; Watt, C. E. J.; Samson, J. C. (2007)
Publisher: Wiley
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Space Physics, Physics::Plasma Physics
Using 1D Vlasov drift-kinetic computer simulations, it\ud is shown that electron trapping in long period standing shear Alfven waves (SAWs) provides an efficient energy sink for wave energy that is much more effective than Landau\ud damping. It is also suggested that the plasma environment\ud of low altitude auroral-zone geomagnetic field lines is more\ud suited to electron acceleration by inertial or kinetic scale\ud Alfven waves. This is due to the self-consistent response of\ud the electron distribution function to SAWs, which must\ud accommodate the low altitude large-scale current system in\ud standing waves. We characterize these effects in terms of the relative magnitude of the wave phase and electron thermal velocities. While particle trapping is shown to be significant across a wide range of plasma temperatures and wave frequencies, we find that electron beam formation in long period waves is more effective in relatively cold plasma.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Borovsky, J. E. (1993), Auroral arc thicknesses as predicted by various theories, J. Geophys. Res., 98(A4), 6101 - 6138.
    • Chaston, C. C., J. Bonnell, C. W. Carlson, J. P. McFadden, R. E. Ergun, and R. J. Strangeway (2003), Kinetic effects in the acceleration of electrons by small scale Alfve´n waves: A FAST case study, Geophys. Res. Lett., 30(6), 1289, doi:10.1029/2002GL015777.
    • Chen, L., and A. Hasegawa (1974), A theory of long period magnetic pulsations 1: steady state excitation of field line resonances, J. Geophys. Res., 79, 1024 - 1032.
    • Hui, C.-H., and C. E. Seyler (1992), Electron acceleration by Alfve´n waves in the magnetosphere, J. Geophys. Res., 97, 3953 - 3963.
    • Keiling, A., J. R. Wygant, C. Cattell, M. Johnson, M. Temerin, F. Mozer, C. A. Kletzing, J. Scudder, C. T. Russell, and W. Peterson (2001), Properties of large electric fields in the plasma sheet at 4 - 7 RE measured with Polar, J. Geophys. Res., 106, 5779 - 5798.
    • Kivelson, M. G., and D. J. Southwood (1986), Coupling of global magnetospheric MHD eigenmodes to field line resonances, J. Geophys. Res., 91, 4345 - 4351.
    • Kletzing, C. A., and S. Hu (2001), Alfve´n wave generated electron time dispersion, Geophys. Res. Lett., 28(4), 693 - 696.
    • Lu, J. Y., R. Rankin, R. Marchand, and V. T. Tikhonchuk (2003), Nonlinear acceleration of dispersive effects in field line resonances, Geophys. Res. Lett., 30(10), 1540, doi:10.1029/2003GL016929.
    • Lysak, R. L., and W. Lotko (1996), On the kinetic dispersion relation for shear Alfve´n waves, J. Geophys. Res., 101, 5085 - 5094.
    • O'Neil, T. (1965), Collisionless damping of nonlinear plasma oscillations, Phys. Fluids, 8, 2255 - 2262.
    • Samson, J. C., T. J. Hughes, F. Creutzberg, D. D. Wallis, R. A. Greenwald, and J. M. Ruohoniemi (1991), Observations of a detached, discrete arc in association with field line resonances, J. Geophys. Res., 96, 15,683 - 15,695.
    • Southwood, D. J. (1974), Some features of field line resonances in the magnetosphere, Planet. Space Sci., 22, 483 - 491.
    • Su, Y. J., R. E. Ergun, W. K. Peterson, T. G. Onsager, R. Pfaff, C. W. Carlson, and R. J. Strangeway (2001), FAST auroral snapshot observations of cusp electron and ion signatures, J. Geophys. Res., 106, 25,595 - 25,600.
    • Thomson, B. J., and R. L. Lysak (1996), Electron acceleration by inertial Alfve´n waves, J. Geophys. Res., 101, 5359 - 5370.
    • Watt, C. E. J., and R. Rankin (2007), Electron acceleration due to inertial Alfve´n waves in a non-Maxwellian plasma, J. Geophys. Res., 112, A04214, doi:10.1029/2006JA011907.
    • Watt, C. E. J., R. Rankin, I. J. Rae, and D. M. Wright (2005), Self-consistent electron acceleration due to inertial Alfve´n wave pulses, J. Geophys. Res., 110, A10S07, doi:10.1029/2004JA010877.
    • Wei, C. Q., J. C. Samson, R. Rankin, and P. Frycz (1994), Electron inertial effects on geomagnetic field line resonances, J. Geophys. Res., 99, 11,265 - 11,276.
    • Wygant, J. R. (2002), Evidence for kinetic Alfve´n waves and parallel electron energization at 4 - 6 RE altitudes in the plasma sheet boundary layer, J. Geophys. Res., 107(A8), 1201, doi:10.1029/2001JA900113. R. Rankin, J. C. Samson, and C. E. J. Watt, Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2J1, Canada.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article