LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cao, J.; Sun, T.; Grattan, K. T. V. (2014)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: T, TK
Noble metal nanoparticle-based localized surface plasmon resonance (LSPR) is an advanced and powerful label-free biosensing technique which is well-known for its high sensitivity to the surrounding refractive index change in the local environment caused by the biomolecular interactions around the sensing area. The characteristics of the LSPR effect in such sensors are highly dependent on the size, shape and nature of the material properties of the metallic nanoparticles considered. Among the various types of metallic nanoparticles used in studies employing the LSPR technique, the use of gold nanorods (GNRs) has attracted particular attention for the development of sensitive LSPR biosensors, this arising from the unique and intriguing optical properties of the material. This paper provides a detailed review of the key underpinning science for such systems and of recent progress in the development of a number of LSPR-based biosensors which use GNR as the active element, including an overview of the sensing principle, the synthesis of GNRs, the fabrication of a number of biosensors, techniques for surface modification of GNRs and finally their performance in several biosensing applications. The review ends with a consideration of key advances in GNR-based LSPR sensing and prospects for future research and advances for the development of the GNR-based LSPR biosensors.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] S.M. Borisov, O.S. Wolfbeis, Optical biosensors, Chemical Reviews 108 (2008) 423-461.
    • [2] D.R. Thevenot, K. Toth, R.A. Durst, G.S. Wilson, Electrochemical biosensors: recommended definitions and classification, Biosensors & Bioelectronics 16 (2001) 121-131.
    • [3] J.C. Pickup, F. Hussain, N.D. Evans, O.J. Rolinski, D.J.S. Birch, Fluorescencebased glucose sensors, Biosensors & Bioelectronics 20 (2005) 2555-2565.
    • [4] L.Y. Wang, R.X. Yan, Z.Y. Hao, L. Wang, J.H. Zeng, J. Bao, X. Wang, Q. Peng, Y.D. Li, Fluorescence resonant energy transfer biosensor based on upconversionluminescent nanoparticles, Angewandte Chemie International Edition 44 (2005) 6054-6057.
    • [5] P.J. Jiang, Z.J. Guo, Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors, Coordination Chemistry Reviews 248 (2004) 205-229.
    • [6] J. Homola, Present and future of surface plasmon resonance biosensors, Analytical and Bioanalytical Chemistry 377 (2003) 528-539.
    • [7] Q.M. Yu, S.F. Chen, A.D. Taylor, J. Homola, B. Hock, S.Y. Jiang, Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor, Sensors and Actuators B: Chemical 107 (2005) 193-201.
    • [8] J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species, Chemical Reviews 108 (2008) 462-493.
    • [9] J. Yakovleva, R. Davidsson, M. Bengtsson, T. Laurell, J. Emneus, Microfluidic enzyme immunosensors with immobilised protein A and G using chemiluminescence detection, Biosensors & Bioelectronics 19 (2003) 21-34.
    • [10] J. Zhang, H.L. Qi, Y. Li, J. Yang, Q. Gao, C.X. Zhang, Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthenium complex, Analytical Chemistry 80 (2008) 2888-2894.
    • [11] S. Scarano, M. Mascini, A.P.F. Turner, M. Minunni, Surface plasmon resonance imaging for affinity-based biosensors, Biosensors & Bioelectronics 25 (2010) 957-966.
    • [12] J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review, Sensors and Actuators B: Chemical 54 (1999) 3-15.
    • [13] S. Eustis, M.A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes, Chemical Society Reviews 35 (2006) 209-217.
    • [14] K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annual Review of Physical Chemistry, Annual Reviews, Palo Alto 58 (2007) 267-297.
    • [15] S.M. Marinakos, S. Chen, A. Chilkoti, Plasmonic detection of a model analyte in serum by a gold nanorod sensor, Analytical Chemistry 79 (2007) 5278-5283.
    • [16] K. Kajikawa, K. Mitsui, Optical fiber biosensor based on localized surface plasmon resonance in gold nanoparticles, in: M.S. Islam, A.K. Dutta (Eds.), Nanosensing: Materials and Devices, SPIE - Int. Soc. Optical Engineering, Bellingham, 2004, pp. 494-501.
    • [17] M. Potara, A.M. Gabudean, S. Astilean, Solution-phase, dual LSPR-SERS plasmonic sensors of high sensitivity and stability based on chitosan-coated anisotropic silver nanoparticles, Journal of Materials Chemistry 21 (2011) 3625-3633.
    • [18] A.D. McFarland, R.P. Van Duyne, Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity, Nano Letters 3 (2003) 1057-1062.
    • [19] A.V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G.A. Wurtz, R. Atkinson, R. Pollard, V.A. Podolskiy, A.V. Zayats, Plasmonic nanorod metamaterials for biosensing, Nature Materials 8 (2009) 867-871.
    • [20] X. Huang, S. Neretina, M.A. El-Sayed, Gold nanorods: from synthesis and properties to biological and biomedical applications, Advanced Materials 21 (2009) 4880-4910.
    • [21] L. Vigderman, B.P. Khanal, E.R. Zubarev, Functional gold nanorods: synthesis, self-assembly, and sensing applications, Advanced Materials 24 (2012) 4811-4841.
    • [22] Z.G. Xie, J. Tao, Y.H. Lu, K.Q. Lin, J. Yan, P. Wang, H. Ming, Polymer optical fiber SERS sensor with gold nanorods, Optics Communication 282 (2009) 439-442.
    • [23] C.J. Murphy, A.M. Gole, S.E. Hunyadi, J.W. Stone, P.N. Sisco, A. Alkilany, B.E. Kinard, P. Hankins, Chemical sensing and imaging with metallic nanorods, Chemical Communications (2008) 544-557.
    • [24] X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, Journal of the American Chemical Society 128 (2006) 2115-2120.
    • [25] J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors, Nature Materials 7 (2008) 442-453.
    • [26] V. Sharma, K. Park, M. Srinivasarao, Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly, Materials Science & Engineering R - Reports 65 (2009) 1-38.
    • [27] E. Hutter, J.H. Fendler, Exploitation of localized surface plasmon resonance, Advanced Materials 16 (2004) 1685-1706.
    • [28] S. Link, M.A. El-Sayed, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals, International Reviews in Physical Chemistry 19 (2000) 409-453.
    • [29] S. Link, M.A. Ei-Sayed, Optical properties and ultrafast dynamics of metallic nanocrystals, Annual Review of Physical Chemistry 54 (2003) 331-366.
    • [30] K.M. Mayer, S. Lee, H. Liao, B.C. Rostro, A. Fuentes, P.T. Scully, C.L. Nehl, J.H. Hafner, A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods, ACS Nano 2 (2008) 687-692.
    • [31] H. Huang, C.C. He, Y.L. Zeng, X.D. Xia, X.Y. Yu, P.G. Yi, Z. Chen, A novel labelfree multi-throughput optical biosensor based on localized surface plasmon resonance, Biosensors & Bioelectronics 24 (2009) 2255-2259.
    • [32] E. Petryayeva, U.J. Krull, Localized surface plasmon resonance: nanostructures, bioassays and biosensing - a review, Analytica Chimica Acta 706 (2011) 8-24.
    • [33] K.M. Mayer, J.H. Hafner, Localized surface plasmon resonance sensors, Chemical Reviews 111 (2011) 3828-3857.
    • [34] P.N. Njoki, I.I.S. Lim, D. Mott, H.Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, C.J. Zhong, Size correlation of optical and spectroscopic properties for gold nanoparticles, Journal of Physical Chemistry C 111 (2007) 14664-14669.
    • [35] R. Gans, Über die form ultramikroskopischer goldteilchen, Annalen der Physik 342 (1912) 881-900.
    • [36] C.A. Foss, G.L. Hornyak, J.A. Stockert, C.R. Martin, Template-synthesized nanoscopic gold particles - optical-spectra and the effects of particle-size and shape, Journal of Physical Chemistry 98 (1994) 2963-2971.
    • [37] S. Link, M.B. Mohamed, M.A. El-Sayed, Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant, Journal of Physical Chemistry B 103 (1999) 3073-3077.
    • [38] M. Hu, J. Chen, Z.-Y. Li, L. Au, G.V. Hartland, X. Li, M. Marquez, Y. Xia, Gold nanostructures: engineering their plasmonic properties for biomedical applications, Chemical Society Reviews 35 (2006) 1084-1094.
    • [39] J. Perez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzan, P. Mulvaney, Gold nanorods: synthesis, characterization and applications, Coordination Chemistry Reviews 249 (2005) 1870-1901.
    • [40] L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, S.S. Yee, Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films, Langmuir: The ACS Journal of Surfaces and Colloids 14 (1998) 5636-5648.
    • [41] A.J. Haes, R.P. Van Duyne, A nanoscale optical blosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, Journal of the American Chemical Society 124 (2002) 10596-10604.
    • [42] M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chemical Reviews 104 (2004) 293-346.
    • [43] J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discussions of the Faraday Society 11 (1951) 55-75.
    • [44] V.V.R. Sai, T. Kundu, S. Mukherji, Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor, Biosensors & Bioelectronics 24 (2009) 2804-2809.
    • [45] N.R. Jana, L. Gearheart, C.J. Murphy, Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template, Advanced Materials 13 (2001) 1389-1393.
    • [46] N.R. Jana, L. Gearheart, C.J. Murphy, Wet chemical synthesis of high aspect ratio cylindrical gold nanorods, Journal of Physical Chemistry B 105 (2001) 4065-4067.
    • [47] B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method, Chemistry of Materials 15 (2003) 1957-1962.
    • [48] X.C. Ye, L.H. Jin, H. Caglayan, J. Chen, G.Z. Xing, C. Zheng, D.N. Vicky, Y.J. Kang, N. Engheta, C.R. Kagan, C.B. Murray, Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives, ACS Nano 6 (2012) 2804-2817.
    • [49] C.J. Murphy, T.K. San, A.M. Gole, C.J. Orendorff, J.X. Gao, L. Gou, S.E. Hunyadi, T. Li, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications, Journal of Physical Chemistry B 109 (2005) 13857-13870.
    • [50] A. Gole, C.J. Murphy, Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed, Chemistry of Materials 16 (2004) 3633-3640.
    • [51] L.F. Gou, C.J. Murphy, Fine-tuning the shape of gold nanorods, Chemistry of Materials 17 (2005) 3668-3672.
    • [52] X.C. Jiang, M.P. Pileni, Gold nanorods: influence of various parameters as seeds, solvent, surfactant on shape control, Colloids and Surfaces A - Physicochemical and Engineering Aspects 295 (2007) 228-232.
    • [53] M.Z. Liu, P. Guyot-Sionnest, Synthesis and optical characterization of Au/Ag core/shell nanorods, Journal of Physical Chemistry B 108 (2004) 5882-5888.
    • [54] D.K. Smith, B.A. Korgel, The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods, Langmuir: The ACS Journal of Surfaces and Colloids 24 (2008) 644-649.
    • [55] Y.Y. Yu, S.S. Chang, C.L. Lee, C.R.C. Wang, Gold nanorods: electrochemical synthesis and optical properties, Journal of Physical Chemistry B 101 (1997) 6661-6664.
    • [56] S.S. Chang, C.W. Shih, C.D. Chen, W.C. Lai, C.R.C. Wang, The shape transition of gold nanorods, Langmuir: The ACS Journal of Surfaces and Colloids 15 (1999) 701-709.
    • [57] R.M. Penner, C.R. Martin, Preparation and electrochemical characterization of ultramicroelectrode ensembles, Analytical Chemistry 59 (1987) 2625-2630.
    • [58] C.R. Martin, Nanomaterials: a membrane-based synthetic approach, Science 266 (1994) 1961-1966.
    • [59] C.R. Martin, Membrane-based synthesis of nanomaterials, Chemistry of Materials 8 (1996) 1739-1746.
    • [60] B.M.I. van der Zande, M.R. Bohmer, L.G.J. Fokkink, C. Schonenberger, Colloidal dispersions of gold rods: synthesis and optical properties, Langmuir: The ACS Journal of Surfaces and Colloids 16 (2000) 451-458.
    • [61] G.L. Hornyak, C.J. Patrissi, C.R. Martin, Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: the nonscattering Maxwell-Garnett limit, Journal of Physical Chemistry B 101 (1997) 1548-1555.
    • [62] A. Boltasseva, Plasmonic components fabrication via nanoimprint, Journal of Optics A - Pure and Applied Optics 11 (2009) 114001.
    • [63] L. Billot, M.L. de la Chapelle, A.S. Grimault, A. Vial, D. Barchiesi, J.L. Bijeon, P.M. Adam, P. Royer, Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement, Chemical Physics Letters 422 (2006) 303-307.
    • [64] F. Kim, J.H. Song, P.D. Yang, Photochemical synthesis of gold nanorods, Journal of the American Chemical Society 124 (2002) 14316-14317.
    • [65] O.R. Miranda, T.S. Ahmadi, Effects of intensity and energy of CWUV light on the growth of gold nanorods, Journal of Physical Chemistry B 109 (2005) 15724-15734.
    • [66] N. Taub, O. Krichevski, G. Markovich, Growth of gold nanorods on surfaces, Journal of Physical Chemistry B 107 (2003) 11579-11582.
    • [67] Y.J. Kim, G. Cho, J.H. Song, Synthesis of size and shape-selective Au nanocrystals via proton beam irradiation, Nuclear Instruments & Methods in Physics Research Section B - Beam Interactions with Materials and Atoms 246 (2006) 351-354.
    • [68] G. Canizal, J.A. Ascencio, J. Gardea-Torresday, M.J. Yacaman, Multiple twinned gold nanorods grown by bio-reduction techniques, Journal of Nanoparticle Research 3 (2001) 475-481.
    • [69] Y.J. Zhu, X.L. Hu, Microwave-polyol preparation of single-crystalline gold nanorods and nanowires, Chemistry Letters 32 (2003) 1140-1141.
    • [70] J.M. Cao, X.J. Ma, M.B. Zheng, J.S. Liu, H.M. Ji, Solvothermal preparation of single-crystalline gold nanorods in novel nonaqueous microemulsions, Chemistry Letters 34 (2005) 730-731.
    • [71] B. Nikoobakht, M.A. El-Sayed, Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods, Langmuir: The ACS Journal of Surfaces and Colloids 17 (2001) 6368-6374.
    • [72] C.J. Murphy, L.B. Thompson, D.J. Chernak, J.A. Yang, S.T. Sivapalan, S.P. Boulos, J. Huang, A.M. Alkilany, P.N. Sisco, Gold nanorod crystal growth: from seed-mediated synthesis to nanoscale sculpting, Current Opinion in Colloid & Interface Science 16 (2011) 128-134.
    • [73] S.H. Brewer, W.R. Glomm, M.C. Johnson, M.K. Knag, S. Franzen, Probing BSA binding to citrate-coated gold nanoparticles and surfaces, Langmuir: The ACS Journal of Surfaces and Colloids 21 (2005) 9303-9307.
    • [74] H. Li, L. Rothberg, Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles, Proceedings of the National Academy of Sciences of the United States of America 101 (2004) 14036-14039.
    • [75] X. Li, L. Jiang, Q. Zhan, J. Qian, S. He, Localized surface plasmon resonance (LSPR) of polyelectrolyte-functionalized gold-nanoparticles for bio-sensing, Colloids and Surfaces A: Physicochemical and Engineering Aspects 332 (2009) 172-179.
    • [76] B.C. Rostro-Kohanloo, L.R. Bickford, C.M. Payne, E.S. Day, L.J.E. Anderson, M. Zhong, S. Lee, K.M. Mayer, T. Zal, L. Adam, C.P.N. Dinney, R.A. Drezek, J.L. West, J.H. Hafner, The stabilization and targeting of surfactant-synthesized gold nanorods, Nanotechnology 20 (2009) 434005.
    • [77] A.P. Leonov, J. Zheng, J.D. Clogston, S.T. Stern, A.K. Patri, A. Wei, Detoxification of gold nanorods by treatment with polystyrenesulfonate, ACS Nano 2 (2008) 2481-2488.
    • [78] E.E. Connor, J. Mwamuka, A. Gole, C.J. Murphy, M.D. Wyatt, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity, Small 1 (2005) 325-327.
    • [79] N.J. Durr, T. Larson, D.K. Smith, B.A. Korgel, K. Sokolov, A. Ben-Yakar, Twophoton luminescence imaging of cancer cells using molecularly targeted gold nanorods, Nano Letters 7 (2007) 941-945.
    • [80] A. Gole, C.J. Murphy, Biotin-streptavidin-induced aggregation of gold nanorods: tuning rod-rod orientation, Langmuir: The ACS Journal of Surfaces and Colloids 21 (2005) 10756-10762.
    • [81] A. Gole, C.J. Murphy, Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization, Chemistry of Materials 17 (2005) 1325-1330.
    • [82] C.S. Ah, S. Do Hong, D.J. Jang, Preparation of AucoreAgshell nanorods and characterization of their surface plasmon resonances, Journal of Physical Chemistry B 105 (2001) 7871-7873.
    • [83] C.C. Huang, Z.S. Yang, H.T. Chang, Synthesis of dumbbell-shaped Au-Ag core-shell nanorods by seed-mediated growth under alkaline conditions, Langmuir: The ACS Journal of Surfaces and Colloids 20 (2004) 6089-6092.
    • [84] L.M. Liz-Marzan, M. Giersig, P. Mulvaney, Synthesis of nanosized gold-silica core-shell particles, Langmuir: The ACS Journal of Surfaces and Colloids 12 (1996) 4329-4335.
    • [85] S.O. Obare, N.R. Jana, C.J. Murphy, Preparation of polystyrene- and silicacoated gold nanorods and their use as templates for the synthesis of hollow nanotubes, Nano Letters 1 (2001) 601-603.
    • [86] J. Perez-Juste, M.A. Correa-Duarte, L.M. Liz-Marzan, Silica gels with tailored, gold nanorod-driven optical functionalities, Applied Surface Science 226 (2004) 137-143.
    • [87] I. Gorelikov, N. Matsuura, Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles, Nano Letters 8 (2008) 369-373.
    • [88] S. Pierrat, I. Zins, A. Breivogel, C. Sonnichsen, Self-assembly of small gold colloids with functionalized gold nanorods, Nano Letters 7 (2007) 259-263.
    • [89] H.W. Liao, J.H. Hafner, Gold nanorod bioconjugates, Chemistry of Materials 17 (2005) 4636-4641.
    • [90] T. Niidome, Y. Akiyama, K. Shimoda, T. Kawano, T. Mori, Y. Katayama, Y. Niidome, In vivo monitoring of intravenously injected gold nanorods using near-infrared light, Small 4 (2008) 1001-1007.
    • [91] T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, Y. Niidome, PEG-modified gold nanorods with a stealth character for in vivo applications, Journal of Controlled Release 114 (2006) 343-347.
    • [92] D. Bartczak, A.G. Kanaras, Preparation of peptide-functionalized gold nanoparticles using one pot EDC/sulfo-NHS coupling, Langmuir: The ACS Journal of Surfaces and Colloids 27 (2011) 10119-10123.
    • [93] C. Yu, L. Varghese, J. Irudayaraj, Surface modification of cetyltrimethylammonium bromide-capped gold nanorods to make molecular probes, Langmuir: The ACS Journal of Surfaces and Colloids 23 (2007) 9114-9119.
    • [94] B. Thierry, J. Ng, T. Krieg, H.J. Griesser, A robust procedure for the functionalization of gold nanorods and noble metal nanoparticles, Chemical Communications (2009) 1724-1726.
    • [95] Q. Dai, J. Coutts, J. Zou, Q. Huo, Surface modification of gold nanorods through a place exchange reaction inside an ionic exchange resin, Chemical Communications (2008) 2858-2860.
    • [96] J. Cao, E.K. Galbraith, T. Sun, K.T.V. Grattan, Effective surface modification of gold nanorods for localized surface plasmon resonance-based biosensors, Sensors and Actuators B: Chemical 169 (2012) 360-367.
    • [97] H.W. Huang, C.R. Tang, Y.L. Zeng, X.Y. Yu, B. Liao, X.D. Xia, P.G. Yi, P.K. Chu, Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods, Colloids and Surfaces B - Biointerfaces 71 (2009) 96-101.
    • [98] N. Nath, A. Chilkoti, Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size, Analytical Chemistry 76 (2004) 5370-5378.
    • [99] K. Fujiwara, H. Watarai, H. Itoh, E. Nakahama, N. Ogawa, Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy, Analytical and Bioanalytical Chemistry 386 (2006) 639-644.
    • [100] K.C. Grabar, R.G. Freeman, M.B. Hommer, M.J. Natan, Preparation and characterization of au colloid monolayers, Analytical Chemistry 67 (1995) 735-743.
    • [101] C.D. Chen, S.F. Cheng, L.K. Chau, C.R.C. Wang, Sensing capability of the localized surface plasmon resonance of gold nanorods, Biosensors & Bioelectronics 22 (2007) 926-932.
    • [102] J. Cao, E.K. Galbraith, T. Sun, K.T.V. Grattan, Cross-comparison of surface plasmon resonance-based optical fiber sensors with different coating structures, IEEE Sensors Journal 12 (2012) 2355-2361.
    • [103] J. Cao, M.H. Tu, T. Sun, K.T.V. Grattan, Wavelength-based localized surface plasmon resonance optical fiber biosensor, Sensors and Actuators B: Chemical 181 (2013) 611-619.
    • [104] S.F. Cheng, L.K. Chau, Colloidal gold-modified optical fiber for chemical and biochemical sensing, Analytical Chemistry 75 (2003) 16-21.
    • [105] T.J. Lin, C.T. Lou, Reflection-based localized surface plasmon resonance fiberoptic probe for chemical and biochemical sensing at high-pressure conditions, Journal of Supercritical Fluids 41 (2007) 317-325.
    • [106] T.J. Lin, M.F. Chung, Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance, Biosensors & Bioelectronics 24 (2009) 1213-1218.
    • [107] W.H. Ni, H.J. Chen, X.S. Kou, M.H. Yeung, J.F. Wang, Optical fiber-excited surface plasmon resonance spectroscopy of single and ensemble gold nanorods, Journal of Physical Chemistry C 112 (2008) 8105-8109.
    • [108] K. Mitsui, Y. Handa, K. Kajikawa, Optical fiber affinity biosensor based on localized surface plasmon resonance, Applied Physics Letters 85 (2004) 4231-4233.
    • [109] S.K. Srivastava, V. Arora, S. Sapra, B.D. Gupta, Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose, Plasmonics 7 (2012) 261-268.
    • [110] Y.B. Lin, Y. Zou, R.G. Lindquist, A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing, Biomedical Optics Express 2 (2011) 478-484.
    • [111] R. Dutta, R. Bharadwaj, S. Mukherji, T. Kundu, Study of localized surfaceplasmon-resonance-based optical fiber sensor, Applied Optics 50 (2011) E138-E144.
    • [112] C.H. Chen, T.C. Tsao, W.Y. Li, W.C. Shen, C.W. Cheng, J.L. Tang, C.P. Jen, L.K. Chau, W.T. Wu, Novel U-shape gold nanoparticles-modified optical fiber for localized plasmon resonance chemical sensing, Microsystem Technologies 16 (2010) 1207-1214.
    • [113] T.J. Lin, M.F. Chung, Using monoclonal antibody to determine lead ions with a localized surface plasmon resonance fiber-optic biosensor, Sensors 8 (2008) 582-593.
    • [114] B.Y. Hsieh, Y.F. Chang, M.Y. Ng, W.C. Liu, C.H. Lin, H.T. Wu, C. Chou, Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoparticles, Analytical Chemistry 79 (2007) 3487-3493.
    • [115] L.K. Chau, Y.F. Lin, S.F. Cheng, T.J. Lin, Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance, Sensors and Actuators B: Chemical 113 (2006) 100-105.
    • [116] J.L. Tang, S.F. Cheng, W.T. Hsu, T.Y. Chiang, L.K. Chau, Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating, Sensors and Actuators B: Chemical 119 (2006) 105-109.
    • [117] J.L. Tang, J.N. Wang, Chemical sensing sensitivity of long-period grating sensor enhanced by colloidal gold nanoparticles, Sensors 8 (2008) 171-184.
    • [118] H.Y. Lin, C.H. Huang, G.L. Cheng, N.K. Chen, H.C. Chui, Tapered optical fiber sensor based on localized surface plasmon resonance, Optics Express 20 (2012) 21693-21701.
    • [119] C. Yu, J. Irudayaraj, Multiplex biosensor using gold nanorods, Analytical Chemistry 79 (2007) 572-579.
    • [120] C. Wang, J. Irudayaraj, Gold nanorod probes for the detection of multiple pathogens, Small 4 (2008) 2204-2208.
    • [121] C.G. Wang, Y. Chen, T.T. Wang, Z.F. Ma, Z.M. Su, Biorecognition-driven selfassembly of gold nanorods: a rapid and sensitive approach toward antibody sensing, Chemistry of Materials 19 (2007) 5809-5811.
    • [122] P.K. Sudeep, S.T.S. Joseph, K.G. Thomas, Selective detection of cysteine and glutathione using gold nanorods, Journal of the American Chemical Society 127 (2005) 6516-6517.
    • [123] L.B. Wang, Y.Y. Zhu, L.G. Xu, W. Chen, H. Kuang, L.Q. Liu, A. Agarwal, C.L. Xu, N.A. Kotov, Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing, Angewandte Chemie International Edition 49 (2010) 5472-5475.
    • [124] G.J. Nusz, S.M. Marinakos, A.C. Curry, A. Dahlin, F. Hook, A. Wax, A. Chilkoti, Label-free plasmonic detection of biomolecular binding by a single gold nanorod, Analytical Chemistry 80 (2008) 984-989.
    • [125] G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T.A. Klar, J. Feldmann, A. Nichtl, K. Kurzinger, Biomolecular recognition based on single gold nanoparticle light scattering, Nano Letters 3 (2003) 935-938.
    • [126] T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D.S. Sutherland, M. Kall, Plasmonic sensing characteristics of single nanometric holes, Nano Letters 5 (2005) 2335-2339.
    • [127] E.M. Larsson, J. Alegret, M. Kall, D.S. Sutherland, Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors, Nano Letters 7 (2007) 1256-1263.
    • [128] B. Sepulveda, P.C. Angelome, L.M. Lechuga, L.M. Liz-Marzan, LSPR-based nanobiosensors, Nano Today 4 (2009) 244-251.
    • [129] A.B. Dahlin, S. Chen, M.P. Jonsson, L. Gunnarsson, M. Kall, F. Hook, Highresolution microspectroscopy of plasmonic nanostructures for miniaturized biosensing, Analytical Chemistry 81 (2009) 6572-6580.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article