LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bokes, P.; Jung, J.; Godby, R. W. (2007)
Languages: English
Types: Article
Subjects:
We derive an expression for the four-point conductance of a general quantum junction in terms of the density response function. Our formulation allows us to show that the four-point conductance of an interacting electronic system possessing either a geometrical constriction and/or an opaque barrier becomes identical to the macroscopically measurable two-point conductance. Within time-dependent density-functional theory the formulation leads to a direct identification of the functional form of the exchange-correlation kernel that is important for the conductance. We demonstrate the practical implementation of our formula for a metal-vacuum-metal interface.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
    • 2Department of Physics, Faculty of Electrical Engineering and Information Technology,
    • Slovak University of Technology, Ilkovicˇova 3, 812 19 Bratislava, Slovak Republic
    • 3Physics Division, National Center for Theoretical Sciences, P.O. Box 2-131, Hsinchu, Taiwan
    • (Dated: February 1, 2008)
    • ∗ Electronic address: 1 J. Taylor, M. M. Brandbyge, and K. Stokbro, Phys. Rev. Lett. 89,
    • 138301 (2002). 2 H. Basch, R. Cohen, and M. A. Ratner, Nano Lett. 5, 1668 (2005). 3 N. Sai, M. Zwolak, G. Vignale, and M. DiVentra, Phys. Rev. Lett.
    • 94, 186810 (2005). 4 J. Jung, P. Bokes, and R. W. Godby, Phys. Rev. Lett. 98, 259701
    • (2007). 5 C. Toher, A. Filippetti, S. Sanvito, and K. Burke, Phys. Rev. Lett.
    • 95, 146402 (2005). 6 M. Koentopp, K. Burke, and F. Evers, Phys. Rev. B 73, 121403(R)
    • (2006). 7 J. J. Palacios, Phys. Rev. B 72, 125424 (2005). 8 G. Stefanucci and C. O. Almbladh, Phys. Rev. B 69, 195318
    • (2004). 9 M. DiVentra and T. N. Todorov, J. Phys.: Condens. Matter 16,
    • 8025 (2004). 10 M. Koentopp, C. Chang, K. Burke, and R. Car,
    • cond-mat/0703591v1 (2007). 11 G. Vignale, C. A. Ullrich, and S. Conti, Phys. Rev. Lett. 79, 4878
    • (1997). 12 P. Delaney and J. C. Greer, Phys. Rev. Lett. 93, 036805 (2004). 13 G. Fagas, P. Delaney, and J. C. Greer, Phys. Rev. B 73, 241314(R)
    • (2006). 14 A. Ferretti, A. Calzolari, R. DiFelice, F. Manghi, M. J. Caldas,
    • M. B. Nardelli, and E. Molinari, Phys. Rev. Lett. 94, 116802
    • (2005). 15 P. Darancet, A. Ferretti, D. Mayou, and V. Olevano, Phys. Rev. B
    • 75, 075102 (2007). 16 K. Thygesen and A. Rubio, J. Chem. Phys. 126, 091101 (2007). 17 Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992). 18 R. E. Prange, Phys. Rev. 131, 1083 (1963). 19 F. Malet, M. Pi, M. Barranco, and E. Lipparini, Phys. Rev. B 72,
    • 205326 (2005). 20 E. Prodan and R. Car, cond-mat/0702192 (2007). 21 P. Bokes and R. W. Godby, Phys. Rev. B 69, 245420 (2004). 22 P. Bokes, J. Jung, and R. W. Godby, cond-mat/0604317 (2006). 23 D. J. Thouless, Phys. Rev. Lett. 47, 972 (1981). 24 A. Kamenev and W. Kohn, Phys. Rev. B 63, 155304 (2001). 25 R. Landauer, Z. Phys. B: Condens. Matter 68, 217 (1987). 26 R. Gebauer and R. Car, Phys. Rev. Lett. 93, 160404 (2004). 27 R. Kubo, in Lectures in Theoretical Physics, Vol. 1, edited by W.
    • E.cBrittin and L. G. Dunham (Interscience, New York, 1959). 28 D. Pines and P. Nozieres, The Theory of Quantum Liquids (W. A.
    • Benjamin, Inc., New York, 1966). 29 G. F. Giuliani and G. Vignale, Quantum Theory of the Electron
    • Liquid (Cambridge University Press, Cambridge, 2005). 30 G. Mahan, Many-Particle Physics (Kluwer Academic/Plenum
    • Publishers, New York, 2000). 31 R. Landauer, in Analogies in Optics and Micro Electronics, edited
    • by W. van Haeringen and D. Lenstra (Kluwer, Dordrecht, 1990). 32 F. Sols, Phys. Rev. Lett. 67, 2874 (1991). 33 H. Mera, P. Bokes, and R. W. Godby, Phys. Rev. B 72, 085311
    • (2005). 34 K. Carva and I. Turek, Czech. J. of Physics 54, D257 (2004). 35 P. Nozieres, Theory of interacting Fermi systems (W. A. Ben-
    • jamin, Inc., New York, 1964). 36 G. Vignale and W. Kohn, Phys. Rev. Lett. 77, 2037 (1996). 37 S. Botti, A. Fourreau, F. Nguyen, Y.-O. Renault, F. Sottile, and L.
    • Reining, Phys. Rev. B 72, 125203 (2005). 38 L. Reining, V. Olevano, A. Rubio, and G. Onida, Phys. Rev. Lett.
    • 88, 66404 (2002). 39 E. K. U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985). 40 J. Jung, P. Garcia-Gonzalez, J. F. Dobson, and R. W. Godby, Phys.
    • Rev. B 70, 205107 (2004). 41 N. Sai, N. Bushong, R. Hatcher, and M. DiVentra, Phys. Rev. B
    • 75, 115410 (2007). 42 Recently, clear signatures of the resistivity dipoles were found in
    • state41. 43 For simplicity of presentation we assume that the induced field
    • according to Eq. 3 and the former needs to be included into the
    • response entering the functional F σ [σ˜ ] where σ˜ = σ ⋆ (1 + χ e)
    • with χ e = δ Ei,e/δ Eaux. 44 From here on we use the atomic units with h¯ = me = e = 1.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article