Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhao, M; Bilton, M; Brown, AP; Cunliffe, AM; Dvininov, E; Dupont, V; Comyn, TP; Milne, SJ (2014)
Publisher: American Chemical Society
Languages: English
Types: Article
Powders of CaO sorbent modified with CaZrO have been synthesized by a wet chemical route. For carbonation and calcination conditions relevant to sorbent-enhanced steam reforming applications, a powder of composition 10 wt % CaZrO/90 wt % CaO showed an initial rise in CO uptake capacity in the first 10 carbonation-decarbonation cycles, increasing from 0.31 g of CO/g of sorbent in cycle 1 to 0.37 g of CO/g of sorbent in cycle 10 and stabilizing at this value for the remainder of the 30 cycles tested, with carbonation at 650 C in 15% CO and calcination at 800 C in air. Under more severe conditions of calcination at 950 C in 100% CO, following carbonation at 650 C in 100% CO, the best overall performance was for a sorbent with 30 wt % CaZrO/70 wt % CaO (the highest Zr ratio studied), with an initial uptake of 0.36 g of CO/g of sorbent, decreasing to 0.31 g of CO /g of sorbent at the 30th cycle. Electron microscopy revealed that CaZrO was present in the form of ≤0.5 μm cuboid and 20-80 nm particles dispersed within a porous matrix of CaO/CaCO; the nanoparticles are considered to be the principal reason for promoting multicycle durability.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anthony, E. J.; Bulewicz, E. M.; Jia, L. Prog. Energy Combust. Sci. 2007, 33, (2), 171- 3. Dou, B.; Dupont, V.; Rickett, G.; Blakeman, N.; Williams, P. T.; Chen, H.; Ding, Y.;
    • Ghadiri, M. Bioresour. Technol. 2009, 100, (14), 3540-3547.
    • Ramkumar, S.; Phalak, N.; Fan, L.-S. Ind. Eng. Chem. Res. 2011, 51, (3), 1186-1192. 8. Manovic, V.; Charland, J. P.; Blamey, J.; Fennell, P. S.; Lu, D. Y.; Anthony, E. J. Fuel
    • Li, Z.-s.; Cai, N.-s.; Huang, Y.-y.; Han, H.-j. Energy Fuels 2005, 19, (4), 1447-1452.
    • 11. Koirala, R.; Reddy, G. K.; Smirniotis, P. G. Energy Fuels 2012, 26, (5), 3103-3109. 20. Broda, M.; Müller, C. R. Fuel 2013, http://dx.doi.org/10.1016/j.fuel.2013.08.004. 21. Vasconcelos, C. New Challenges in the Sintering of HA/ZrO2 Composites. In Sintering
    • of Ceramics - New Emerging Techniques, Lakshmanan, A., Ed. InTech: 2012. 22. Molinder, R.; Comyn, T. P.; Hondow, N.; Parker, J. E.; Dupont, V. Energy Environ. Sci.
    • 2012, 5, (10), 8958-8969. 23. Donat, F.; Florin, N. H.; Anthony, E. J.; Fennell, P. S. Environ. Sci. Technol. 2011, 46,
    • 26. Wang, Z.; Comyn, T. P.; Ghadiri, M.; Kale, G. M. J. Mater. Chem. 2011, 21, 16494 1649. 28. Manovic, V.; Anthony, E. J. Int. J. Environ. Res. Public Health 2010, 7, (8), 3129-3140. 29. Florin, N. H.; Harris, A. T. Energy Fuels 2008, 22, (4), 2734-2742.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article