Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Walkley, B.; San Nicolas, R.; Sani, M.A.; Rees, G.J.; Hanna, J.V.; van Deventer, J.S.J.; Provis, J.L. (2016)
Publisher: Elsevier
Languages: English
Types: Article
Stoichiometrically-controlled alkali-activated pastes containing calcium-(sodium) aluminosilicate hydrate (C-(N)-A-S-H) and sodium aluminosilicate hydrate (N-A-S-H) gels are produced by alkali-activation of high-purity synthetic calcium aluminosilicate powders. These powders are chemically comparable to the glass in granulated blast furnace slag, but without interference from minor constituents. The physiochemical characteristics of these gels depend on precursor chemical composition. Increased Ca content of the precursor promotes formation of low-Al, high-Ca C-(N)-A-S-H with lower mean chain length as determined by quantification of solid state nuclear magnetic resonance spectra, and less formation of calcium carboaluminate ‘Alumino-ferrite mono’ (AFm) phases. Increased Al content promotes Al inclusion and reduced crosslinking within C-(N)-A-S-H, increased formation of calcium carboaluminate AFm phases, and formation of an additional N-A-S-H gel. Small changes in precursor composition can induce significant changes in phase evolution, nanostructure and physical properties, providing a novel route to understand microstructural development in alkali-activated binders and address key related durability issues.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] M.C.G. Juenger, F. Winnefeld, J.L. Provis, J.H. Ideker, Advances in alternative cementitious binders, Cem Concr Res, 41 (2011) 1232-1243.
    • [2] J.L. Provis, A. Palomo, C.J. Shi, Advances in understanding alkali-activated materials, Cem Concr Res, 78 (2015) 110-125.
    • [3] X.-m. Cui, L.-p. Liu, G.-j. Zheng, R.-p. Wang, J.- geopolymers, J Non-Cryst Solids, 356 (2010) 72-76.
    • [4] I. García- - cphee, Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium, Cem Concr Res, 40 (2010) 27-32.
    • [5] I. García- - of cementitious gels: C–S–H and N–A–S–H, J Sol-Gel Sci Technol, 45 (2008) 63-72.
    • [21] R.J. Myers, S.A. Bernal, J.D. Gehman, J.S.J. van Deventer, J.L. Provis, The role of Al in cross-linking of alkali-activated slag cements, J Am Ceram Soc, 98 (2015) 996-1004.
    • [22] R.J. Myers, S.A. Bernal, J.L. Provis, A thermodynamic model for C-(N-)A-S-H gel: CNASH_ss. Derivation and validation, Cem Concr Res, 66 (2014) 27-47. [36] J.L. Provis, P. Duxson, G.C. Lukey, J.S.J. van Deventer, Statistical thermodynamic model for Si/Al ordering in amorphous aluminosilicates, Chem Mater, 17 (2005) 2976-2986. [38] B. Lothenbach, G. Le Saoût, E. Gallucci, K. Scrivener, Influence of limestone on the hydration of Portland cements, Cem Concr Res, 38 (2008) 848-860. [51] S.A. Bernal, R. Mejía de Gutié incorporation on the carbonation of alkali silicate-activated slags, Cem Concr Res, 40 (2010) 898-907.
    • [54] V.C. Farmer, The Infrared spectra of minerals, Mineralogical Society, London, 1974.
    • [55] I.G. Richardson, The nature of C-S-H in hardened cements, Cem Concr Res, 29 (1999) 1131-1147.
    • [56] A.L. Gameiro, A.S. Silva, M.d.R. Veiga, A.L. Velosa, Lime-metakaolin hydration products: A microscopy analysis, Mater Technol, 46 (2012) 145-148.
    • [57] R.R. Lloyd, J.L. Provis, J.S.J. van Deventer, Microscopy and microanalysis of inorganic polymer cements. 1: remnant fly ash particles, J Mater Sci, 44 (2009) 608-619.
    • [68] J. Brus, L. Kobera, M. Urbanová, D. Koloušek, J. Kotek, Insights into the structural transformations of aluminosilicate inorganic polymers: A comprehensive solid-state NMR study, J Phys Chem C, 116 (2012) 14627-14637.
    • [69] H. Viallis, P. Faucon, J.C. Petit, A. Nonat, Interaction between salts (NaCl, CsCl) and calcium silicate AL AL Z B, 103 (1999) 5212-5219.
    • [70] P. Duxson, G.C. Lukey, F. Separovic, J.S.J. van Deventer, Effect of alkali cations on aluminum incorporation in geopolymeric gels, Ind Eng Chem Res, 44 (2005) 832-839.
    • [71] G. Renaudin, J. Russias, F. Leroux, C. Cau-dit- – S–H and C–A–S–H samples—Part II: Local environment investigated by spectroscopic analyses, J Solid State Chem, 182 (2009) 3320-3329.
    • [72] F. Méducin, B. Bresson, N. Lequeux, M.N.d. Noirfontaine, H. Zanni, Calcium silicate hydrates investigated by solid-state high resolution 1H and 29Si nuclear magnetic resonance, Cem Concr Res, 37 (2007) 631-638.
    • [73] B. Bresson, S. Masse, H. Zanni, C. Noik, Tricalcium silicate hydration at high temperature. A 29Si and 1H NMR Investigation, in: P. Colombet, A.-R. Grimmer, H. Zanni, Z Resonance Spectroscopy of Cement-Based Materials, Springer, Berlin Heidelberg, 1998, pp. 209-215.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article