LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lamy-Chappuis, B; Angus, DAC; Fisher, Q; Grattoni, C; Yardley, BWD (2014)
Publisher: American Geophysical Union
Languages: English
Types: Article
Subjects:
Reservoir injectivity and storage capacity are the main constraints for geologic CO2 sequestration, subject to safety and economic considerations. Brine acidification following CO2 dissolution leads to fluid-rock interactions that alter porosity and permeability, thereby affecting reservoir storage capacity and injectivity. Thus, we determined how efficiently CO2-enriched brines could dissolve calcite in sandstone cores and how this affects the petrophysical properties. During computerized tomography monitored flow-through reactor experiments, calcite dissolved at a rate largely determined by the rate of acid supply, even at high flow velocities which would be typical near an injection well. The porosity increase was accompanied by a significant increase in rock permeability, larger than that predicted using classical porosity-permeability models. This chemically driven petrophysical change might be optimized using injection parameters to maximize injectivity and storage.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Andre, L., P. Audigane, M. Azaroual, and A. Menjoz (2007), Numerical modeling of fluid-rock chemical interactions at the supercritical CO2- liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France), Energy Convers. Manage., 48(6), 1782-1797, doi:10.1016/j.enconman.2007.01.006.
    • Bachu, S., and J. J. Adams (2003), Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution, Energy Convers. Manage., 44(20), 3151-3175, doi:10.1016/S0196-8904(03)00101-8.
    • Bachu, S., W. D. Gunter, and E. H. Perkins (1994), Aquifer disposal of CO2: Hydrodynamic and mineral trapping, Energy Convers. Manage., 35(4), 269-279, doi:10.1016/0196-8904(94)90060-4.
    • Bateman, K., C. Rochelle, A. Lacinska, and D. Wagner (2011), CO2-porewater-rock reactions - Large-scale column experiment (Big Rig II), Energy Procedia, 4, 4937-4944, doi:10.1016/j.egypro.2011.02.463.
    • Bear, J. (1972), Dynamics of Fluids in Porous Media, Elsevier, New York.
    • Bowker, K. A., and P. J. Shuler (1991), Carbon dioxide injection and resultant alteration of the Weber Sandstone, Rangely Field, Colorado, AAPG Bull., 75, 1489-1499.
    • Duan, Z. H., and R. Sun (2003), An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar, Chem. Geol., 193(3-4), 257-271, doi:10.1016/j.marchem.2005.09.001.
    • Hounsfield, G. N. (1973), Computerized transverse axial scanning (tomography): Part 1. Description of system, Br. J. Radiol., 46(552), 1016-1022, doi:10.1259/0007-1285-46-552-1016.
    • IEA (2010), Carbon Capture and Storage: Progress and Next Steps, IEA/CSLF Report to the Muskoka 2010 G8 Summit.
    • IPCC (2005), Carbon Dioxide Capture and Storage, edited by B. Metz et al., pp. 442, Cambridge Univ. Press, Cambridge, U.K., and New York.
    • Kharaka, Y. K., D. R. Cole, J. J. Thordsen, E. Kakouros, and H. S. Nance (2006), Gas-water-rock interactions in sedimentary basins: CO2 sequestration in the Frio Formation, Texas, USA, J. Geochem. Explor., 89(1-3), 183-186, doi:10.1016/j.gexplo.2005.11.077.
    • Knauss, K. G., J. W. Johnson, and C. I. Steefel (2005), Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2, Chem. Geol., 217(3-4), 339-350, doi:10.1016/j.chemgeo.2004.12.017.
    • Luquot, L., and P. Gouze (2009), Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks, Chem. Geol., 265(1-2), 148-159, doi:10.1016/j.chemgeo.2009.03.028.
    • Mavko, G., T. Mukerji, and J. Dvorkin (2003), The Rock Physics Handbook : Tools for Seismic Analysis in Porous Media, pp. 339, Cambridge Univ. Press, Cambridge, U.K.
    • Michael, K., A. Golab, V. Shulakova, J. Ennis-King, G. Allinson, S. Sharma, and T. Aiken (2010), Geological storage of CO2 in saline aquifers-A review of the experience from existing storage operations, Int. J. Greenhouse Gas Control, 4(4), 659-667, doi:10.1016/j.ijggc.2009.12.011.
    • Nakashima, Y., and S. Kamiya (2007), Mathematica programs for the analysis of three-dimensional pore connectivity and anisotropic tortuosity of porous rocks using X-ray computed tomography image data, Int. J. Nucl. Energy Sci. Technol., 44(9), 1233-1247, doi:10.1080/ 18811248.2007.9711367.
    • Oelkers, E. H., and D. R. Cole (2008), Carbon dioxide sequestration: A solution to a global problem, Elements, 4(5), 305-310, doi:10.2113/ gselements.4.5.305.
    • Pokrovsky, O. S., S. V. Golubev, and J. Schott (2005), Dissolution kinetics of calcite, dolomite and magnesite at 25 degrees C and 0 to 50 atm pCO2, Chem. Geol., 217(3-4), 239-255, doi:10.1016/j.chemgeo.2004.12.012.
    • Rosenbauer, R. J., T. Koksalan, and J. L. Palandri (2005), Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers, Fuel Process. Technol., 86(14-15), 1581-1597, doi:10.1016/j. fuproc.2005.01.011.
    • Rosenqvist, J., A. D. Kilpatrick, and B. W. D. Yardley (2012), Solubility of carbon dioxide in aqueous fluids and mineral suspensions at 294 K and subcritical pressures, Appl. Geochem., 27(8), 1610-1614, doi:10.1016/j.apgeochem.2012.03.008.
    • Sahimi, M. (1993), Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing, Rev. Mod. Phys., 65(4), 1393-1534, doi:10.1103/RevModPhys.65.1393.
    • Sayegh, S. G., F. F. Krause, M. Girard, C. DeBree, and Petroleum Recovery Inst (1990), Rock/fluid interactions of carbonated brines in a sandstone reservoir: Pembina Cardium, Alberta, Canada, SPE Form. Eval., 5(4), 399-405, doi:10.2118/19392-PA.
    • Withjack, E. M. (1988), Computed tomography for rock property determination and fluid flow visualization, SPE Form. Eval., 3(4), 696-704, doi:10.2118/16951-PA.
    • Xu, T. F., N. Spycher, E. Sonnenthal, G. X. Zhang, L. E. Zheng, and K. Pruess (2011), TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions, Comput. Geosci., 37(6), 763-774, doi:10.1016/j.cageo.2010.10.007.
    • Yu, Z. C., L. Liu, S. Y. Yang, S. Li, and Y. Z. Yang (2012), An experimental study of CO2-brine-rock interaction at in situ pressure-temperature reservoir conditions, Chem. Geol., 326, 88-101, doi:10.1016/j.chemgeo.2012.07.030.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article