LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhang, G; Lee, C; Harvey, D; Qi, A
Publisher: Elsevier
Languages: English
Types: Article
Subjects: TK
The miniaturization and three dimensional die stacking in advanced microelectronic packages poses a big challenge to their non-destructive evaluation by acoustic micro imaging. In particular, their complicated structures and multiple interfaces make the interpretation of acoustic data even more difficult. A common phenomenon observed in acoustic micro imaging of microelectronic packages is the edge effect phenomena, which obscures the detection of defects such as cracks and voids. In this paper, two dimensional finite element modelling is firstly carried out to numerically simulate acoustic micro imaging of modern microelectronic packages. A flip-chip with a 140µm solder bump and a 230MHz virtual transducer with a spot size of 16µm are modelled. Crack propagation in the solder bump is further modelled, and B-scan images for different sizes of micro-cracks are obtained. C-line plots are then derived from the simulated B-scan images to quantitatively analyze the edge effect. Gradual progression of the crack is found to have a predictable influence on the edge effect profile. By exploiting this feature, a crack propagation characterization method is developed. Finally, an experiment based on the accelerated thermal cycling test is designed to verify the proposed method.

Share - Bookmark

Cite this article