Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Marciano, G.; Huang, D.T. (2016)
Publisher: Wiley
Journal: Acta Crystallographica. Section F, Structural Biology Communications
Languages: English
Types: Article
Subjects: FACT, histones, Spt16, aminopeptidase, pita-bread fold, histone chaperone, Research Communications

Classified by OpenAIRE into

mesheuropmc: congenital, hereditary, and neonatal diseases and abnormalities
The histone chaperone FACT plays an important role in facilitating nucleosome\ud assembly and disassembly during transcription. FACT is a heterodimeric\ud complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16\ud resembles an inactive aminopeptidase. How this domain contributes to the\ud histone chaperone activity of FACT remains elusive. Here, the crystal structure\ud of the N-terminal domain (NTD) of human Spt16 is reported at a resolution\ud of 1.84 A˚ . The structure adopts an aminopeptidase-like fold similar to those\ud of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs.\ud Isothermal titration calorimetry analyses show that human Spt16 NTD binds\ud histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may\ud contribute to histone binding in the FACT complex. Surface-residue conservation\ud and electrostatic analysis reveal a conserved acidic patch that may be\ud involved in histone binding.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adams, P. D. et al. (2010). Acta Cryst. D66, 213-221.
    • Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. (2001). Proc. Natl Acad. Sci. USA, 98, 10037-10041.
    • Belotserkovskaya, R., Oh, S., Bondarenko, V. A., Orphanides, G., Studitsky, V. M. & Reinberg, D. (2003). Science, 301, 1090-1093.
    • Emsley, P. & Cowtan, K. (2004). Acta Cryst. D60, 2126-2132.
    • Formosa, T., Eriksson, P., Wittmeyer, J., Ginn, J., Yu, Y. & Stillman, D. J. (2001). EMBO J. 20, 3506-3517.
    • Gurard-Levin, Z. A., Quivy, J.-P. & Almouzni, G. (2014). Annu. Rev. Biochem. 83, 487-517.
    • Hainer, S. J., Charsar, B. A., Cohen, S. B. & Martens, J. A. (2012). G3, 2, 555-567.
    • Heo, K., Kim, H., Choi, S. H., Choi, J., Kim, K., Gu, J., Lieber, M. R., Yang, A. S. & An, W. (2008). Mol. Cell, 30, 86-97.
    • Hondele, M., Stuwe, T., Hassler, M., Halbach, F., Bowman, A., Zhang, E. T., Nijmeijer, B., Kotthoff, C., Rybin, V., Amlacher, S., Hurt, E. & Ladurner, A. G. (2013). Nature (London), 499, 111-114.
    • Kabsch, W. (2010). Acta Cryst. D66, 125-132.
    • Kasai, N., Tsunaka, Y., Ohki, I., Hirose, S., Morikawa, K. & Tate, S. (2005). J. Biomol. NMR, 32, 83-88.
    • Kemble, D. J., McCullough, L. L., Whitby, F. G., Formosa, T. & Hill, C. P. (2015). Mol. Cell, 60, 294-306.
    • Kemble, D. J., Whitby, F. G., Robinson, H., McCullough, L. L., Formosa, T. & Hill, C. P. (2013). J. Biol. Chem. 288, 10188-10194.
    • Lambert, S. J., Nicholson, J. M., Chantalat, L., Reid, A. J., Donovan, M. J. & Baldwin, J. P. (1999). Acta Cryst. D55, 1048-1051.
    • Luger, K., Ma¨ der, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. (1997). Nature (London), 389, 251-260.
    • Masse, J. E., Wong, B., Yen, Y.-M., Allain, F. H.-T., Johnson, R. C. & Feigon, J. (2002). J. Mol. Biol. 323, 263-284.
    • McCullough, L., Rawlins, R., Olsen, A., Xin, H., Stillman, D. J. & Formosa, T. (2011). Genetics, 188, 835-846.
    • Myers, C. N., Berner, G. B., Holthoff, J. H., Martinez-Fonts, K., Harper, J. A., Alford, S., Taylor, M. N. & Duina, A. A. (2011). PLoS One, 6, e20847.
    • O'Donnell, A. F., Brewster, N. K., Kurniawan, J., Minard, L. V., Johnston, G. C. & Singer, R. A. (2004). Nucleic Acids Res. 32, 5894- 5906.
    • Orphanides, G., LeRoy, G., Chang, C.-H., Luse, D. S. & Reinberg, D. (1998). Cell, 92, 105-116.
    • Orphanides, G., Wu, W.-H., Lane, W. S., Hampsey, M. & Reinberg, D. (1999). Nature (London), 400, 284-288.
    • Storoni, L. C., McCoy, A. J. & Read, R. J. (2004). Acta Cryst. D60, 432-438.
    • Stuwe, T., Hothorn, M., Lejeune, E., Rybin, V., Bortfeld, M., Scheffzek, K. & Ladurner, A. G. (2008). Proc. Natl Acad. Sci. USA, 105, 8884-8889.
    • VanDemark, A. P., Blanksma, M., Ferris, E., Heroux, A., Hill, C. P. & Formosa, T. (2006). Mol. Cell, 22, 363-374.
    • VanDemark, A. P., Xin, H., McCullough, L., Rawlins, R., Bentley, S., Heroux, A., Stillman, D. J., Hill, C. P. & Formosa, T. (2008). J. Biol. Chem. 283, 5058-5068.
    • Winkler, D. D., Muthurajan, U. M., Hieb, A. R. & Luger, K. (2011). J. Biol. Chem. 286, 41883-41892.
    • Winter, G. (2010). J. Appl. Cryst. 43, 186-190.
    • Xin, H., Takahata, S., Blanksma, M., McCullough, L., Stillman, D. J. & Formosa, T. (2009). Mol. Cell, 35, 365-376.
    • Zunder, R. M., Antczak, A. J., Berger, J. M. & Rine, J. (2012). Proc. Natl Acad. Sci. USA, 109, E144-E153.
  • No related research data.
  • No similar publications.
  • BioEntity Site Name
    3bipProtein Data Bank
    3biqProtein Data Bank
    3cb5Protein Data Bank

Share - Bookmark

Funded by projects

  • EC | RINGE3

Cite this article