LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kyaw, S.T.; Jones, I.A.; Hyde, T.H. (2016)
Publisher: SAGE
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: mental disorders
The present paper describes a method of predicting the failure of a thermal barrier coating system due to interfacial cracks and cracks within bulk coatings. The interfacial crack is modelled by applying cohesive interfaces where the thermally grown oxide is bonded to the ceramic thermal barrier coating. Initiation and propagation of arbitrary cracks within coatings are modelled using the extended finite element method. Two sets of parametric studies were carried out, concentrating on the effect of thickness of the oxide layer and that of initial cracks within the ceramic coating on the growth of coating cracks and the subsequent failures. These studies have shown that a thicker oxide layer creates higher tensile residual stresses during cooling from high temperature, leading to longer coating cracks. Initial cracks parallel to the oxide interface accelerate coating spallation and simulation of this process is presented in this paper. By contrast, segmented cracks prevent growth of parallel cracks which can lead to spallation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] K.W. Schlichting, N.P. Padture, E.H. Jordan, M. Gell, Materials Science and Engineering A, 342 (2003) 120-130.
    • [2] D. Naumenko, V. Shemet, L. Singheiser, W. Quadakkers, Journal of Materials Science, 44 (2009) 1687- 1703.
    • [3] H. Bhatnagar, S. Ghosh, M.E. Walter, Mechanics of Materials, 42 (2010) 96-107.
    • [4] M. Caliez, J.L. Chaboche, F. Feyel, S. Kruch, Acta Materialia, 51 (2003) 1133-1141.
    • [5] R. Soulignac, V. Maurel, L. Rémy, A. Köster, Surface and Coatings Technology, 237 (2013) 95-104.
    • [6] P. Seiler, M. Bäker, J. Rösier, IOP Conference Series: Materials Science and Engineering, 10 (2010) 012056.
    • [7] T.S. Hille, T.J. Nijdam, A.S.J. Suiker, S. Turteltaub, W.G. Sloof, Acta Materialia, 57 (2009) 2624-2630.
    • [8] T.S. Hille, A.S.J. Suiker, S. Turteltaub, Engineering Fracture Mechanics, 76 (2009) 813-825.
    • [9] L. Xie, D. Chen, E.H. Jordan, A. Ozturk, F. Wu, X. Ma, B.M. Cetegen, M. Gell, Surface & Coatings Technology 201 ((2006)) 1058-1064.
    • [10] U. Hermosilla, University of Nottingham, (Thesis (PhD), 2008).
    • [11] V. Maurel, E.P. Busso, J. Frachon, J. Besson, F. σ'Guyen, IσT J SτLIDS STRUCT, 51(19) ((2014)) 3293- 3330.
    • [12] Abaqus, Dassault Systemes Simulia Corp., (2011).
    • [13] C. Sharma, Master Thesis (University of Pavia), (2007).
    • [14] M. Martena, D. Botto, P. Fino, S. Sabbadini, M.M. Gola, C. Badini, Eng. Fail. Anal., 13 (2006) 409-426.
    • [15] A. Rabiei, A.G. Evans, Acta Materialia, 48 (2000) 3963-3976.
    • [16] P.K. Wright, A.G. Evans, Current Opinion in Solid State and Materials Science, 4 (1999) 255-265.
    • [17] M. Bäker, J. Rösler, G. Heinze, Acta Materialia, 53 (2005) 469-476.
    • [18] T. Belytschko, T. Black, International Journal for Numerical Methods in Engineering, 45 ((1999)) 601-620.
    • [19] J.M. Melenk, I. Babuska, Comput. Assist. Mech. Eng. Sci, 4 (1997) 607-632.
    • [20] T. Belytschko, R. Gracie, G. Ventura, IτP Publishing Ltd • Modelling and Simulation in Materials Science and Engineering, Volume 17, Number 4, (2009).
    • [21] G. Alfano, M.A. Crisfield, International Journal for Numerical Methods in Engineering, 50 (2001) 1701 - 1736.
    • [22] S.T. Kyaw, I.A. Jones, T.H. Hyde, Eng. Fail. Anal., 27 (2013) 150-164.
    • [23] L. Baiamonte, F. Marra, G. Pulci, J. Tirillò, F. Sarasini, C. Bartuli, T. Valente, Surface and Coatings Technology, 277 (2015) 289-298.
    • [24] D. Zhu, R. Miller, Journal of Thermal Spray Technology, 9 (2000) 175-180.
    • [25] V. Lughi, V.K. Tolpygo, D.R. Clarke, Materials Science and Engineering: A, 368 (2004) 212-221.
    • [26] M.Shinozaki, T.W. Clyne, Presented at Energy Materials Conference, (2012).
    • [27] Thompson.J.A, Ji.W, Klocker.T, Clyne T.W, Ninth International Symposium on Superalloys, (2000) 685- 692.
    • [28] A. Cipitria, I.O. Golosnoy, T.W. Clyne, Sintering Kinetics of Plasma-Sprayed Zirconia TBCs. In, 2007 International Thermal Spray Conference, Beijing, China, 14 - 16 May 2007. ASM International, 434-439.
    • [29] E.P. Busso, H.E. Evans, Z.Q. Qian, M.P. Taylor, Acta Materialia, 58 (2010) 1242-1251.
    • [30] E.P. Busso, J. Lin, S. Sakurai, M. Nakayama, Acta Mater., 49 (2001) 1515-1528.
    • [31] E.P. Busso, J. Phys. IV France, 09 (1999) Pr9-287-Pr289-296.
    • [32] J. Rösler, M. Bäker, K. Aufzug, Acta Mater. , 52 (2004) 4809-4817.
    • [33] E.P. Busso, Z.Q. Qian, M.P. Taylor, H.E. Evans, Acta Materialia, 57 (2009) 2349-2361.
    • [34] U. Hermosilla, M.S.A. Karunaratne, I.A. Jones, T.H. Hyde, R.C. Thomson, Mater. Sci. Eng. A, 513-514 (2009) 302-310.
    • [35] S. Maharjan, X. C. Zhang, F. Z. Xuan, Z. D. Wang, S.T. Tu, J. Appl. Phys. 110, 063511 (2011), (2011).
    • [36] R.G. Munro, J. Am. Ceram. Soc., 80 (1997) 1919-1928.
    • [37] J. Kondoh, H. Shiota, K. Kawachi, T. Nakatani, Journal of Alloys and Compounds, 365 (2004) 253-258.
    • [38] J.W. Adams, R. Ruh, K.S. Mazdiyasni, Journal of the American Ceramic Society, 80 (1997) 903-908.
    • [39] M. Gell, J. Eric, V. Krishnakumar, K. McCarron, B. Barber, Y.-H. Sohn, V.K. Tolpygo, Surface and Coatings Technology, 120-121 (1999) 53-60.
    • [40] M. Okazaki, Y. Yamazaki, K. Namba, K. Ogawa, M. Ohki, K. Fujiyama, H. Waki, M. Arai, M. Sekihara, A. Itoh, H. Fukanuma, N. Ohno, H. Kaneko, M. Kawamura, Journal of Solid Mechanics and Materials Engineering, Volume 4, Issue 2, pp. 252-263 (2010).
    • [41] C. Berndt, Journal of Materials Engineering, 11 (1989) 275-282.
    • [42] M. Seraffon, N.J. Simms, J.R. Nicholls, J. Sumner, J. Nunn, Mater. High Temp., 28 (2011 ) 309-314.
    • [43] F. Krasucki, S. Lenci, International Journal of Solids and Structures, 37 (2000) 3619-3632.
    • [44] D.W. Stollberg, J.M. Hampikian, L. Riester, W.B. Carter, Materials Science and Engineering A, 359 (2003) 112-118.
    • [45] Y.YAMAZAKI, S.KUGA, T.YOSHIDA, Acta Metallurgica Sinica(English letters), Vol.24 (2011) 109- 117.
    • [46] M. Ranjbar-Far, J. Absi, G. Mariaux, F. Dubois, Mater. & Des., 31 (2010) 772-781. Substrate [47] 202.7 184.8
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article