Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
De Martino, A.; Musto, R. (1995)
Publisher: World Scientific Publishing
Languages: English
Types: Article
Subjects: Condensed Matter, QC
We show that a Coulomb gas Vertex Operator representation of 2D Conformal Field Theory gives a complete description of abelian Hall fluids: as an euclidean theory in two space dimensions leads to the construction of the ground state wave function for planar and toroidal geometry and characterizes the spectrum of low energy excitations; as a $1+1$ Minkowski theory gives the corresponding dynamics of the edge states. The difference between a generic Hall fluid and states of the Jain's sequences is emphasized and the presence, in the latter case, of of an $\hat {U}(1)\otimes \hat {SU}(n)$ extended algebra and the consequent propagation on the edges of a single charged mode and $n-1$ neutral modes is discussed.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. D.C. Tsui, H. L. Stormer and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
    • 4. For a review see e.g. G. Cristofano, G. Maiella, R. Musto and F. Nicodemi, Nucl. Phys. 33C, 119 (1993).
    • 6. A. De Martino and R. Musto, Knizhnik-Zamolodchikov equation and extended symmetry for stable Hall states , preprint DPS-NA-19 /95, cond-mat 1995.
    • 8. G. Cristofano, G. Maiella, R. Musto and F. Nicodemi, Mod. Phys. Lett. 6A 2885 (1991).
    • 9. See e.g. J. Fr¨olich and A. Zee, Nucl. Phys. B364, 517 (1991); X. G. Wen and A. Zee, Phys. Rev. B 46, 2290 (1993).
    • 10. X. G. Wen, Int. J. Mod. Phys. B6, 1711 (1992), and references contained therein.
    • 15. D. Mumford, Tata Lectures on Theta, Birkh¨auser Boston (1983).
    • 16. E. Keski-Vakkuri and X. G. Wen, Int. J. Mod. Phys. B7, 4227 (1993).
    • 17. R. R. Du, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer and K. W. West, Phys. Rev. Lett. 70, 2944 (1993).
    • 18. See e.g. B. I. Halperin, P. A . Lee and N. Read, Phys. Rev. B 47, 7312 (1993); S. H. Simon and B. I. Halperin, Phys. Rev. B 48 17368 (1993), B 50 1807 (1994);
    • 19. J. K. Wang and V. J. Goldman, Phys. Rev. Lett. 67, 74 (1991)
    • 20. G. Cristofano, G. Maiella, R. Musto and F. Nicodemi, FQHE and Jain's approach on the torus, Int. J. Mod. Phys. B, in press; M. Flohr and R. Varnhagen, Jour. Phys. A27, 3999 (1994); D. Karabali, Nucl. Phys. FS B419, 437 (1994).
    • 21. see e.g. P. Goddard and D. Olive, Int. J. Mod. Phys. A1, 303 (1986).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article