Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Watson, William A (2013)
Languages: English
Types: Doctoral thesis
Subjects: QB0349

Classified by OpenAIRE into

arxiv: Astrophysics::Cosmology and Extragalactic Astrophysics
In this thesis we make predictions of extreme elements of large-scale structure (LSS) in the universe. We base our study on the concordance cosmological model, the Lambda Cold-Dark-Matter (ΛCDM) model, and in doing so we utilise a suite of very large N-body,dark-matter-only simulations. To understand LSS throughout cosmic history, it is vital to quantify the evolution ofthe numbers of objects in the universe. To this end, we perform a numerical investigation into the abundance of dark matter haloes across an unprecedented combination of redshifts and masses. For the very young universe (z > 6), a fit is presented for the numbers of rare haloes that hosted the energetic objects that drove reionization. At lower redshifts we predict number counts of galaxy groups and clusters, the observation of which forms perhaps our current, best method of interpreting nature on large scales. Our low redshift results are based on simulations with very large volumes, which allows us to probe rare objects in a ΛCDM universe, including massive clusters, voids and extreme-velocity mergers. These objects challenge our understanding of the universe by exhibiting the extremes of the ΛCDM model. With the possible exception of the Bullet Cluster, our simulation results are in line with current observations. We study the late-time Integrated Sachs-Wolfe (ISW) effect using a (6 h−1Gpc)³ volume simulation which contains enough particles (6000³) to resolve luminous red galaxies. From these data we calculate the expected ISW-LSS cross-correlation signal in a ΛCDM universe. The signal is found to be strongest for LSS surveys that can probe redshift ranges of z ~ 0.2 to 0.8. The ISW effect promises to be an important measure of the evolution of dark energy, the overall understanding of which is perhaps the most important current goal in cosmology.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article